matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBeweis durch Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Beweis durch Induktion
Beweis durch Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis durch Induktion: Umformung
Status: (Frage) beantwortet Status 
Datum: 11:11 Sa 30.10.2010
Autor: zoj

Brauche Hilfe bei der Umformung der Gleichung.
Bei der Aufgabe muss ich folgendes beweisen:

[mm] \summe_{k=1}^{n} [/mm] k * k!  = (n+1)!-1

Habe den Induktions-Schritt durchgeführt, sodass nun folgende Zeile da Steht:

(n+1)! -1 + (n+1)(n+1)! // Nun muss ich die Gleichung so umformen, dass ((n+1)+1)!-1 da steht.

Dazu könnte ich ja  (n+1)! ausklammern, das Problem ist die -1. Da habe ich keinen Vorfaktor (n+1)! den ich ausklammern könnte.

Wie kann ich denn (n+1)! ausklammern?

        
Bezug
Beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Sa 30.10.2010
Autor: Sax

Hi,

klammere ihn nur aus den Summanden aus. die (n+1)! enthalten.
Die 1 brauchst du doch sowieso noch einzeln.

Gruß Sax.

Bezug
                
Bezug
Beweis durch Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Sa 30.10.2010
Autor: zoj

Danke für den Tipp!

habe nun folgendes da stehen:

(n+1)! ( 1 + n+1 ) -1
= (n+1)! ( n+ 2) -1

Nun habe ich hier noch eine Formel:
n!(n+1) = (n+1)!

Wenn ich diese nun anwende steht folgendes:

n!(n+1)(n+2) -1

Hmm, das bringt mich nicht weiter...


Bezug
                        
Bezug
Beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Sa 30.10.2010
Autor: schachuzipus

Hallo zoj,


> Danke für den Tipp!
>  
> habe nun folgendes da stehen:
>  
> (n+1)! ( 1 + n+1 ) -1 [ok]
>  = (n+1)! ( n+ 2) -1 [ok] [mm](\star)[/mm]
>  
> Nun habe ich hier noch eine Formel:
>  n!(n+1) = (n+1)! [ok]

Schreibe hier mal [mm] $k!\cdot{}(k+1)=(k+1)!$ [/mm]

Dann musst du die Formel auf $k=n+1$ anwenden, ersetze jedes $k$ durch $n+1$ !

>  
> Wenn ich diese nun anwende steht folgendes:
>  
> n!(n+1)(n+2) -1 [ok] umständlich, aber richtig!

Ja, was ist denn [mm]\red{n!\cdot{}(n+1)}\cdot{}\blue{(n+2)}[/mm]?

Doch [mm]=\red{(n+1)!}\cdot{}\blue{(n+2)}[/mm] (was ja auch oben schon steht)

[mm]=(n+2)![/mm]

Damit also [mm](\star)=(n+2)!-1[/mm]

>  
> Hmm, das bringt mich nicht weiter...

Doch doch!

Gruß

schachuzipus



Bezug
                                
Bezug
Beweis durch Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Sa 30.10.2010
Autor: zoj

Wow, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]