matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseBeweis durch Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "stochastische Prozesse" - Beweis durch Induktion
Beweis durch Induktion < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis durch Induktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:42 Di 01.09.2015
Autor: GirlyMaths

Hallo an alle :)

Ich muss einen Beweis mittels Induktion durchführen und bekomme es alleine leider nicht hin. Deshalb würde ich mich sehr über Tipps von euch freuen!

Es handelt sich dabei um das Maß [mm] $\widehat{GW}_*$, [/mm] das auf einen Galton-Watson-Baum definiert wird. Folgendes soll bewiesen werden:

Das oben definierte Maß [mm] $\widehat{\,GW\,}_*$ [/mm] genügt der [mm] Rekursion\\ [/mm]
[mm] $\widehat{\,GW\,}_*[t;v]_{n+1}=\frac{kp_k}{m}\cdot\frac{1}{k}$\widehat{\,GW\,}_*$[t;v]_n\prod\limits_{j\neq i}^{}GW[t^{(j)}]_n$.\\ [/mm]
Mit Induktion fassen wir zusammen, dass für alle $n$ und für alle [mm] $[t;v]_n$ gilt:\\ [/mm]
[mm] $\widehat{\,GW\,}_*[t;v]_n=\frac{1}{m^n}GW[/mm] [t][mm] _n$.\\ [/mm]
Daher gilt für alle $n$ und alle Bäume [mm] $t$\\ [/mm]
[mm] $\widehat{\,GW\,}[/mm] [t][mm] _n=W_n(t)GW[/mm] [t]_n$.

Wir schließen hier ja von (n+1) auf n, da weiß ich leider schon von Beginn an nicht, wie ich starten soll.

Liebe Grüße,
GirlyMaths

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis durch Induktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:01 Do 17.09.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]