matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisBeweis des Satzes von Morera
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Beweis des Satzes von Morera
Beweis des Satzes von Morera < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis des Satzes von Morera: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Do 30.08.2007
Autor: Natalie2210

Hallo!
Ich habe folgende Version des Satzes von Morera vor mir liegen:

Sei [mm] U\subseteq \IC [/mm] offen und f:U-> [mm] \IC [/mm] stetig und für jede einschließlich Rand in U gelegene Dreiecksfläche gelte

[mm] \integral_{\gamma}{f(z) dz} [/mm] = 0

für die Randkurve [mm] \gamma [/mm] des Dreiecks. Dann ist f holomorph.

folgendes ist der Beweis dazu: Es genügt, den Satz für eine Kreisscheibe U zu beweisen, weil Holomorphie eine lokale Eigenschaft ist.  Sei also OBdA
U={z | |z|=r}.
Setze [mm] \alpha [/mm] z(t):=tz.
Dann ist
[mm] F(z):=\integral_{\alpha z}{f(z) dz} [/mm] eine Stammfunktion von f(z, denn für z0 aus U und
[mm] \beta [/mm] z(t):)= (1-t)*z0+tz ist

[mm] \bruch{F(z)-F(z0}{z-z0}=...=\integral_{0}^{1}{f((1-t)*z0+tz) dx} [/mm] und das geht für z->z0 gegen f(z0), womit die Holomorphie von F bewiesen wäre und f die Ableitung von F ist.
Da f die Ableitung einer holomorphen Funktion, ist f nach dem Satz von Goursat selbst holomorph.
                                                      [mm] \Box [/mm]

Ich verstehe nur nicht, wo die Vorraussetzung eingeht, dass das Integral von f über die Randkurven der in U gelegenen Dreiecke gleich Null sein muss!

Vielen dank für Hilfe im voraus,
Natalie

        
Bezug
Beweis des Satzes von Morera: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Do 30.08.2007
Autor: rainerS

Hallo Natalie!

> Ich habe folgende Version des Satzes von Morera vor mir
> liegen:
>  
> Sei [mm]U\subseteq \IC[/mm] offen und [mm]f:U \rightarrow \IC[/mm] stetig und für jede
> einschließlich Rand in U gelegene Dreiecksfläche gelte
>  
> [mm]\integral_{\gamma}{f(z) dz} = 0 [/mm]
>
> für die Randkurve [mm]\gamma[/mm] des Dreiecks. Dann ist f holomorph.
>  
> folgendes ist der Beweis dazu: Es genügt, den Satz für eine
> Kreisscheibe U zu beweisen, weil Holomorphie eine lokale
> Eigenschaft ist.  Sei also OBdA
> [mm] U=\{z\mid |z|\leq r\}. [/mm]
> Setze [mm]\alpha z(t):=tz[/mm].
> Dann ist
> [mm]F(z):=\integral_{\alpha z}{f(z) dz}[/mm] eine Stammfunktion von [mm]f(z)[/mm], denn für [mm]z_0[/mm] aus U und
> [mm]\beta z(t):= (1-t)*z_0+tz[/mm] ist
>  
> [mm]\bruch{F(z)-F(z_0)}{z-z_0}=...=\integral_{0}^{1}{f((1-t)*z_0+tz) dt}[/mm]
> und das geht für [mm]z\rightarrow z_0[/mm] gegen [mm]f(z_0)[/mm], womit die Holomorphie
> von F bewiesen wäre und f die Ableitung von F ist.
> Da f die Ableitung einer holomorphen Funktion, ist f nach
> dem Satz von Goursat selbst holomorph.
> [mm]\Box[/mm]
>  
> Ich verstehe nur nicht, wo die Vorraussetzung eingeht, dass
> das Integral von f über die Randkurven der in U gelegenen
> Dreiecke gleich Null sein muss!

Bei der Herleitung der Gleichung für den Differenzenquotienten wird über das Dreieck mit den Eckpunkten 0, z und [mm]z_0[/mm] integriert. Das Integral entlang der Strecke von 0 bis z ergibt F(z), das Integral entlang der Strecke von 0 bis [mm]z_0[/mm] ergibt [mm]F(z_0)[/mm], und das Integral entlang [mm]\beta z(t)[/mm] ergibt nach der Substitution [mm]z\mapsto(1-t)*z_0+tz[/mm] gerade
[mm](z-z_0)*\integral_{0}^{1}{f((1-t)*z0+tz) dt}[/mm]

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]