matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBeweis der Injektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Beweis der Injektivität
Beweis der Injektivität < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis der Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Do 18.06.2009
Autor: der_dennis

Aufgabe
Sei [mm]f_\lambda:[-\pi, \pi] \mapsto \IR^2 f_\lambda(t)=(t-\lambda sin(t), \lambda cos(t))[/mm].

Zeige, dass für [mm] 0 \leq \lambda \leq 1 [/mm] die Abbildung injektiv ist.

Hallo,

hier mein Ansatz:

Ich habe zu zeigen, dass für zwei t, t' aus dem Definitionsbereich aus f(t)=f(t') folgt, dass t=t'.

Für die zweite Komponentenfunktion muss damit gelten

[mm]\lambda cos(t) = \lambda cos(t')[/mm]

Aufgrund des Definitionsbereichs folgt gleich: t'=-t oder t'=t.

Ich würde also ersteres Annehmen und zeigen, dass dann aber

[mm]t-\lambda sin(t) = t'-\lambda sin(t') \gdw t-\lambda sin(t) = -t-\lambda sin(-t)[/mm]

mit dem angegebenen Lambda nicht lösbar ist. Da hänge ich leider seit Stunden :(

Wenn jemand von Euch einen Tipp hat, wäre ich sehr dankbar!!!

Herzlichen Dank an alle, die sich die Zeit nehmen, mir zu helfen!

Beste Grüße,
Dennis

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis der Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Do 18.06.2009
Autor: Gonozal_IX

Hallo Dennis,

stelle die Gleichung einfach um, unter Benutzung von sin(-t) = -sin(t).
Dann kommst du auf eine Gleichung, die offensichtlich nicht für alle t aus deinem Intervall gilt :)

MfG,
Gono.

Bezug
                
Bezug
Beweis der Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Do 18.06.2009
Autor: der_dennis

Hallo Gono,

vielen Dank für Deine Antwort!

Der Tipp war schon ganz gut, damit habe ich auch gerade schon ein wenig probiert.

Man kommt dan schön auf

[mm]t=\lambda sin(t)[/mm]

Es kommt aber nun nicht darauf an, zu zeigen, dass das nicht für alle gilt, sondern für kein t (mit entsprechender Annahme über Lambda). Ich hatte t und t' ja so gewählt, dass f(t)=f(t').

Ich glaube, ich argumentiere jetzt irgendwie über die Ableitung von sin'(t)=cos(t) <= 1, dass das ausgedrückte Grössenverhältnis für 0<lambda<1 nicht sein kann und mache für lambda=0 und lambda=1 noch eine Sonderbetrachtung.

Oder hat noch wer eine charmantere Idee? ;-)

Danke an alle!

Dennis

Bezug
                        
Bezug
Beweis der Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Do 18.06.2009
Autor: Gonozal_IX

Hm,

allerdings würde ich spontan behaupten, dass es so ein t gibt, für dass dann [mm]t = \lambda sin(t)[/mm] gilt..... das liefert dir recht fix der Zwischenwertsatz.

Betrachte [mm]f(t) = t- \lambda sin(t)[/mm]

[mm] f(-\pi) [/mm] < 0, [mm] f(\pi) [/mm] > 0, d.h es gibt nen t, so dass f(t) = 0....

MfG,
Gono.

edit: Das kannst du auch direkt nachrechnen.

Nehme t' = -t und wähle t so, dass t = [mm] \lambda [/mm] sin(t) gilt (warum es das gibt, siehe oben), dann gilt f(t') = f(t), ergo f nicht injektiv.
Ausnahme ist nur [mm] \lambda [/mm] = 0.

MfG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]