Beweis, dass Menge konvex < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:27 So 18.04.2010 | Autor: | Katrin89 |
Aufgabe | Hallo,
wie kann ich z.B. an folgendem Bsp zeigen, dass sie Mengekonvex ist?
Allgemein gilt ja:
die Menge ist konvex, wenn für zwei Punkte a,b dieser Menge gilt, dass p*a+(1-p)*b mit p aus [0,1] auch wieder in dieser Menge liegt.
Ich habe die Menge:
1) x aus [mm] R^3, [/mm] es gilt [mm] x_1>=2
[/mm]
ok, wäre das dann so:
(pa+(1-p)b)
p>=0 und a,b>=2
dann gilt:
(ich schreib das mal so hin: 0*2+1*2)=2, also >=2? |
(pa+(1-p)b)
p>=0 und a,b>=2
dann gilt:
(ich schreib das mal so hin: 0*2+1*2)=2, also >=2?
Kann ich das so machen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:29 So 18.04.2010 | Autor: | leduart |
Hallo
Nein, ich versteh nicht mal was du machst.
nnimm nen beliebigen Punkt a=(x1,x2,x3) und b=(y1,y2,y3)
jetzt bilde p*a+q*b und zeige dass dann wieder die 2te komponente >2 ist
also [mm] p*x1+q*y1\ge2 [/mm] falls [mm] x1\ge [/mm] 2 und [mm] y1\ge [/mm] 2
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:48 So 18.04.2010 | Autor: | Katrin89 |
Danke für deine Antwort. Mmmh, ich versteh es leider nicht so wirklich. So war mein Anfang:
konvex, falls für die beiden Pkt a und b gilt:
p*a+(1-p)*b liegt in der Menge
also:
[mm] p*(a_1;a_2;a_3)+(1-p)*(b_1;b_2;b_3) [/mm] ist größer gleich
[mm] p*(2;a_2.a_3)+(1*p)*(2;b_3;b_3)
[/mm]
worher weiß ich, dass das jetzt wieder in der Menge liegt? ich könnte p jetzt noch mit >=0 abschätzen, weil p ja zwischen 0 und 1 liegt.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:24 So 18.04.2010 | Autor: | leduart |
Hallo
du weisst [mm] a2\ge0 [/mm] und [mm] b2\ge0 [/mm]
dann rechne mal p*a2+(1-p)*b2=p(a2-b2)+b2
dann über leg ob und warum das >2 ist.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:49 So 18.04.2010 | Autor: | Katrin89 |
Danke für deine Antwort.
Hä? Warum weiß ich denn, dass [mm] a_2 [/mm] und [mm] b_2 [/mm] >=0 ist?
Sorry, ich versteh irgendwie nicht, was ich machen soll... bitte um Geduld
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:00 So 18.04.2010 | Autor: | leduart |
Hallo
Entschuldige ich hatte x2>2 in Erinnerung. ersetz einfach alle Indices 2 durch 1. dann gilt ja [mm] a1\ge2, b1\ge2 [/mm] und u musst es für die Summe zeigen.
Mit Hä werd ich, auch wenn ich nen Fehler gemacht habe ungern angeredet.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:16 So 18.04.2010 | Autor: | Katrin89 |
Hallo Leduart,
entschuldige, so war das natürlich nicht gemeint, sondern hä?ich habe keine Ahnung und verstehe es leider nicht. War nicht auf dich bezogen.
Also nochmal zum Thema:
ich weiß, dass [mm] a_1 [/mm] und [mm] b_1>= [/mm] 2 ist, wenn ich jetzt die Summe bilde mit p*v+(1-p)*b, dann kann ich diese ja mit [mm] a_1 [/mm] und [mm] b_1 [/mm] >=2 abschätzen.
Sorry, aber ich verstehe einfach nicht, was ich dann weiter zeigen soll.
Ich habe das oben ja schonmal geschrieben, wie die Summe aussieht. Ich sehe da nicht, was ich beweisen soll bzw. was ich bewiesen habe.
Bitte um Verständnis...
Oder soll ich das ganze komponentenweise zeigen, also:
wenn [mm] a_1 [/mm] und [mm] b_1 [/mm] in der Menge liegen, dann :
[mm] p*a_1+(1-p)b_1 [/mm] >= 2p+2-2p=2, also größer 2, dann habe ich es nur für eine Komponente gezeigt, geht das?
Viele Grüße
und echt super, dass du dir hier die Mühe machst und Geduld hast , ich stehe da irgendwie auf dem Schlauch..
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:37 So 18.04.2010 | Autor: | leduart |
Hallo.
die Menge ist doch dadurch gegeben, dass die ersten Komponenten >2 sind.
also musst du nur zeigen, dass die bei der Adition mit p und q wieder größer 2 sind, dann liegt p*a+q*p wieder in der menge, was du ja zeigen wolltest.
nur musst du noch zeigen, dass die Gleichung
$ [mm] p\cdot{}a_1+(1-p)b_1 [/mm] $ >= 2p+2-2p=2 gilt. du hast ja nichtmal verwendet, dass p<1 ist. d.h. so ist deine Folgerung noch falsch.(überleg warum, indem du etwa a1=3, b1=100 wählst.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:58 So 18.04.2010 | Autor: | Katrin89 |
Hallo,
p*a+(1-p)*b>=2p+2-2p=2 löst sich doch eh auf, weil ich mit 2 abschätzen kann, da a,b>=2 sind.
Für mich ist der Fall da jetzt erledigt, damit habe ich doch gezeigt, dass es wieder in der Menge liegt. Auch wenn p<=1 ist, da 2 addiert wird, ist die Summe immer größer oder gleich zwei.
Oder verstehe ich das falsch?
Viele Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:10 So 18.04.2010 | Autor: | leduart |
Hallo
ja du machst nen dicken Fehler: a1=3, b1=100 beide >2
p*3-p*100+100=-97p+100 jetzt ist das nur >2 wenn p<1 ist.
du kannst doch nicht -b1*p dadurch vergrössern , dass du b1 verkleinerst?
noch mal, p*a+(1-p)*b>=2p+2-2p gilt nicht allgemein für a,b>2
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 So 18.04.2010 | Autor: | Katrin89 |
Hallo,
es gilt also für a,b>2 und p<=1, was gefordert wird, da ich ja die Def. von konvex benutze.
Ich schaue es mir morgen noch einmal an.
Vielen Dank für deine ganzen Hinweise und deine Mühe.
Ich gucke nochmal drüber.
Gute Nacht.
|
|
|
|