Beweis Supremum Maximum < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:00 Do 02.11.2006 | Autor: | sasalein |
Aufgabe | Es seien A, B [mm] \subset \IR [/mm] nach oben beschränkte Mengen reeller Zahlen.
a) Beweisen Sie: sup(A [mm] \cup [/mm] B) = max(sup(A), sup(B))
b) Beweisen Sie oder widerlegen Sie durch ein Gegenbeispiel: sup(A [mm] \cap [/mm] B) = min(sup(A), sup(B) |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Die einzige Idee, die ich für a) habe, ist, dass ich die Formel umschreiben könnte zu sup(A [mm] \cup [/mm] B) = max(sup(A) [mm] \cap [/mm] sup(B)). Aber ich weiß auch nicht, ob das etwas bringt. Ist es eventuell sinnvoll die beiden Fälle sup(A) > sup(B) und umgekehrt? Ich finde einfach keinen nutzbringenden Ansatz...
Bei der Teilaufgabe b) würde ich sagen, dass die Gleichung nicht gilt, wenn die Schnittmenge A [mm] \cap [/mm] B leer ist. Oder ist dieser Fall irgendwie ausgeschlossen und ich habe es übersehen?
Danke für eure Hilfe schonmal im Voraus,
Sasa
|
|
|
|
Hallo Sasa,
bei a) lohnt es sich, [mm] $\sup [/mm] A [mm] \leq \sup [/mm] B$ anzunehmen, denn den Fall [mm] $\sup [/mm] A > [mm] \sup [/mm] B$ kannst du ja dann durch Vertauschen der Variablen beweisen. Es genügt also o.B.d.A., nur den Fall [mm] $\sup [/mm] A [mm] \leq \sup [/mm] B$ zu beweisen. Den Fall der Gleichheit musst du mit betrachten, aber da könntest du ja eine weitere Fallunterscheidung machen, wenn es dir leichter fällt.
Bei b) hast du recht, diese Behauptung gilt nicht immer. Du musst nur ein konkretes Beispiel angeben, d.h. zwei Mengen A und B, wo die Gleichung falsch ist.
Gruß,
SirJective
|
|
|
|