matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und DatenstrukturenBeweis O-Notation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algorithmen und Datenstrukturen" - Beweis O-Notation
Beweis O-Notation < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis O-Notation: Behauputng beweisen/widerlegen
Status: (Frage) überfällig Status 
Datum: 19:51 Sa 02.06.2007
Autor: RalU

Aufgabe
Hallo, Leute!
Es geht um folgende Aufgabe (O-notation, Komplexitätsklassen):

Beweisen oder widerlegen Sie folgende Behauptung:
[mm] 5n^{2}+100n [/mm] = [mm] O(n^{2}) [/mm]

Ok, ich hab folgendermaßen angesetzt:

[mm] \exists [/mm] c > 0, [mm] \exists [/mm] no [mm] \in \IN \forall [/mm] n > no gilt:

f(n) <= c*g(n)


Beweisidee:
wähle c=5
wähle no=1

jetzt folgt

f(no) <= c* g(n0)
also
[mm] no^{2}+100*no<= 1*n^{2} [/mm]
101<=5 -> falsch


Damit wäre die Aussage widerlegt.
Aber eigentlich bin ich mir da nicht sicher, weil ich denke, die Aussage ist gültig. Aber wo liegt dann mein Fehler?

Mit freundlichen Grüßen,
Ralf

        
Bezug
Beweis O-Notation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 12.06.2007
Autor: HohesC

Ist die Frage noch aktuell oder hat sich das mittlerweile erledigt? Die Fälligkeit ist ja abgelaufen...

Bezug
        
Bezug
Beweis O-Notation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:36 Mi 13.06.2007
Autor: devilofdeath


> Hallo, Leute!
>  Es geht um folgende Aufgabe (O-notation,
> Komplexitätsklassen):
>  
> Beweisen oder widerlegen Sie folgende Behauptung:
>  [mm]5n^{2}+100n[/mm] = [mm]O(n^{2})[/mm]
>  Ok, ich hab folgendermaßen angesetzt:
>  
> [mm]\exists[/mm] c > 0, [mm]\exists[/mm] no [mm]\in \IN \forall[/mm] n > no gilt:
>  
> f(n) <= c*g(n)
>  
>
> Beweisidee:
>  wähle c=5
>  wähle no=1
>  
> jetzt folgt
>  
> f(no) <= c* g(n0)
>  also
>  [mm]no^{2}+100*no<= 1*n^{2}[/mm]
>  101<=5 -> falsch

>  
>
> Damit wäre die Aussage widerlegt.
>  Aber eigentlich bin ich mir da nicht sicher, weil ich
> denke, die Aussage ist gültig. Aber wo liegt dann mein
> Fehler?
>  
> Mit freundlichen Grüßen,
>  Ralf

falls es noch von Belangen ist:

Mein Lösungsvorschlag :

5* [mm] n^{2} [/mm] + 100*n [mm] \le c*n^{2} [/mm]         dividiere durch [mm] n^{2} [/mm]

5+ [mm] \bruch{100}{n} \le [/mm] c                    

man sieht hier, das der Term  [mm] \bruch{100}{n} [/mm] bei n [mm] \to \infty [/mm]  gegen 0 geht.

daraus folgt, c [mm] \ge [/mm] 105

nun wählen wir ein [mm] n_{0} [/mm] = 1 , c = 105 und setzen dies ein

5* [mm] 1^{2} [/mm] + 100*1 [mm] \le [/mm] 105*1  

105 [mm] \ge [/mm] 105  =>passt und gilt auch [mm] \forall [/mm] n [mm] \ge n_{0} [/mm]

lg




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]