matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweis Mittelpunkt von2Punkten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Beweis Mittelpunkt von2Punkten
Beweis Mittelpunkt von2Punkten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Mittelpunkt von2Punkten: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:01 Mo 14.11.2005
Autor: tj4life

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Sei G  [mm] \subset \IR² [/mm] eine Gerade und seien a,b  [mm] \varepsilon [/mm] G, a [mm] \not=b. [/mm] Zeigen Sie: es existiert genau ein Punkt c  [mm] \varepsilon [/mm] G, sodass gilt:

d(a,c)=d(b,c)

Zeigen Sie auch, dass für diesen Punkt gilt:

c= [mm] \bruch{1}{2}(a+b) [/mm] und d(a,c) = d(b,c) = [mm] \bruch{1}{2}d(a,b) [/mm]

Soweit die Aufgabe.

Ansatz:

c muss in d(a,c) und in d(b,c) sein
Daher benutze ich die Norm:
d(a,c) = ||c,a-c||
d(b,c) = ||c,b-c||

Aber wie beweise ich jetzt, dass es genau einen Punkt gibt für den das gilt?

Dass [mm] d(a,c)=d(b,c)=\bruch{1}{2}d(a,b) [/mm] gilt und wie dies zu beweisen ist, ist dann eigentlich klar.

        
Bezug
Beweis Mittelpunkt von2Punkten: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:09 Mo 14.11.2005
Autor: MathePower

Hallo tj4life,

[willkommenmr]

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Sei G  [mm]\subset \IR²[/mm] eine Gerade und seien a,b  [mm]\varepsilon[/mm]
> G, a [mm]\not=b.[/mm] Zeigen Sie: es existiert genau ein Punkt c  
> [mm]\varepsilon[/mm] G, sodass gilt:
>  
> d(a,c)=d(b,c)
>  
> Zeigen Sie auch, dass für diesen Punkt gilt:
>  
> c= [mm]\bruch{1}{2}(a+b)[/mm] und d(a,c) = d(b,c) =
> [mm]\bruch{1}{2}d(a,b)[/mm]
>  
> Soweit die Aufgabe.
>  
> Ansatz:
>  
> c muss in d(a,c) und in d(b,c) sein
>  Daher benutze ich die Norm:
>  d(a,c) = ||c,a-c||
>  d(b,c) = ||c,b-c||


>  
> Aber wie beweise ich jetzt, dass es genau einen Punkt gibt
> für den das gilt?

Nimm an es gäbe zwei unterschiedliche Punkte für die das gilt, und führe dies zum Widerspruch.

>  
> Dass [mm]d(a,c)=d(b,c)=\bruch{1}{2}d(a,b)[/mm] gilt und wie dies zu
> beweisen ist, ist dann eigentlich klar.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]