matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenBeweis Lösungen liegen imKreis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Beweis Lösungen liegen imKreis
Beweis Lösungen liegen imKreis < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Lösungen liegen imKreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:15 Mo 09.11.2009
Autor: together

Aufgabe
Seien n [mm] \in \IN [/mm] \ {0} und [mm] a_{i} \in \IC [/mm] mit [mm] |a_{i}|< [/mm] 1. Sei [mm] P(z)=z^n+a_{1}z^{n-1}+...+a_{n-1}z+a_{n}. [/mm]
Zeigen Sie, dass alle Lösungen von P(z)=0 innerhalb des Kreises |z|=n liegen.

Hallo zusammen,

wie führe ich solch einen Beweis?
Mit vollständiger Induktion?
Und ich dachte, da [mm] |a_{i}|< [/mm] 1, kann die 1 in P(z) nicht vorkommen....aber das scheint ja falsch zu sein.

Ich bin für Tipps dankbar.

Ich habe die Frage in keinem anderen Forum oder keinen anderen Internetseiten gestellt.

VG
together

        
Bezug
Beweis Lösungen liegen imKreis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:36 Mo 09.11.2009
Autor: pelzig

Sei [mm]P(z)=0[/mm]. Wenn [mm]|z|\ge 1[/mm] ist, dann ist [mm] $$|z|^n=|P(z)-z^n|=\left|\sum_{i=0}^{n-1}a_iz^i\right|\le\sum_{i=0}^{n-1}|a_i||z|^i<\sum_{i=0}^{n-1}|z|^i\le n|z|^{n-1}$$ [/mm] Gruß, Robert

Bezug
                
Bezug
Beweis Lösungen liegen imKreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:42 Mo 09.11.2009
Autor: together


> Sei [mm]P(z)=0[/mm]. Wenn [mm]|z|\ge 1[/mm] ist, dann ist
> [mm]|z|^n=|P(z)-z^n|=\left|\sum_{i=0}^{n-1}a_iz^i\right|\le\sum_{i=0}^{n-1}|a_i||z|^i<\sum_{i=0}^{n-1}|z|^i\le n|z|^{n-1}[/mm]
> Gruß, Robert

Und das reicht als Beweis?

VG
together

Bezug
                        
Bezug
Beweis Lösungen liegen imKreis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Mo 09.11.2009
Autor: fred97


> > Sei [mm]P(z)=0[/mm]. Wenn [mm]|z|\ge 1[/mm] ist, dann ist
> >
> [mm]|z|^n=|P(z)-z^n|=\left|\sum_{i=0}^{n-1}a_iz^i\right|\le\sum_{i=0}^{n-1}|a_i||z|^i<\sum_{i=0}^{n-1}|z|^i\le n|z|^{n-1}[/mm]
> > Gruß, Robert
>
> Und das reicht als Beweis?


Na, klar

Robert hat gezeigt: aus $|z| [mm] \ge [/mm] 1$ folgt $|z| [mm] \le [/mm] n$

Ist $|z| < 1$ , so ist trivialerweise $|z| [mm] \le [/mm] n$

FRED


>  
> VG
>  together


Bezug
                                
Bezug
Beweis Lösungen liegen imKreis: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Mo 09.11.2009
Autor: together

Vielen Dank an euch!

VG
together

Bezug
                                
Bezug
Beweis Lösungen liegen imKreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Di 10.11.2009
Autor: peeetaaa

ach und da muss man jetzt gar nichts mehr auflösen oder so?

Bezug
                                        
Bezug
Beweis Lösungen liegen imKreis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Di 10.11.2009
Autor: fred97

Nein

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]