Beweis Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:29 Fr 20.07.2007 | Autor: | fisch000 |
Aufgabe | Die Folge [mm] (a_n, [/mm] n [mm] \in \IN) [/mm] in [mm] \IR [/mm] sei gegeben durch [mm] a_n [/mm] = [mm] \bruch{3n-1}{4n+5}. [/mm] Beweisen sie den Grenzwert. |
Hier eine Lösung von einem Kommillitonen:
[mm] \bruch{3n-1}{4n+5} [/mm] - [mm] \bruch{3}{4} [/mm] = [mm] |\bruch{-19}{4(4n+5)}| [/mm] = [mm] \bruch{19}{4} [/mm] * [mm] \bruch{1}{4n+5} \le \bruch{5}{4n+5} \le \bruch{5}{4n} \le \bruch{2}{n} \Rightarrow \bruch{2}{n} [/mm] < [mm] \varepsilon \Rightarrow n_0 [/mm] > [mm] \bruch{2}{\varepsilon}.
[/mm]
Soweit müsst es richtig sein. Mein Problem ist eigentlich das allgemeine Verständnis der Grenzwertdefinition. Die Rechungen kann ich zwar noch nachvollziehen aber ehrlich gesagt habe ich keine Ahnung was ich nun mit diesem Ergebnis anfangen soll. Die Definition des Grenzwertes ist mir bekannt : zu jedem [mm] \varepsilon [/mm] > 0 gibt es ein [mm] n_0 [/mm] so das [mm] a_n [/mm] - a < [mm] \varepsilon [/mm] für alle n [mm] \ge n_o. [/mm] Diesen Satz kann ich schon auswendig aber leider verstehe ich den nicht so richtig. Wenn mir also jemand von euch auf verständliche Weise diese Definition erklären könnte, am besten mit dieser Aufgabe, wäre ich sehr glücklich.
MfG
|
|
|
|
Hiho,
erstmal ne alternative Beweisidee ;)
[mm]\bruch{3n-1}{4n+5} = \bruch{n(3 - \bruch{1}{n})}{n(4 + \bruch{5}{n})} = \bruch{3 - \bruch{1}{n}}{4 + \bruch{5}{n}} \to \bruch{3 - 0}{4 + 0} = \bruch{3}{4}[/mm]
Aber zurück zur Definition [mm]|a_n - a| < \varepsilon[/mm].
Was bedeutet dies?
Anschaulich heisst es, dass der Abstand zwischen allen Elementen ab [mm] a_n_0 [/mm] und dem Grenzwert kleiner als [mm] \varepsilon [/mm] wird.
D.h. in jeder noch so kleinen Umgebung um den Grenzwert finde ich unendlich Folgenglieder, ausserhalb der Umgebung aber nur endlich viele.
MfG,
Gono.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:56 Fr 20.07.2007 | Autor: | fisch000 |
Die alternative Beweismethode ist mir zwar bekannt aber die wollten hier das Ganze mit epsilon, [mm] n_0 [/mm] usw. haben. Deiner Erklärung kann ich soweit folgen, habe aber noch ein Porblem mit diesem [mm] n_0. [/mm] In der Aufgabe wurde bewiesen das [mm] n_0 [/mm] > [mm] \bruch{2}{\varepsilon} [/mm] ist. Aber was sagt mir jetzt diese Gleichung aus ? Und was mache ich mit diesem Wert ?
MfG
|
|
|
|
|
Naja,
das sagt dir, dass wenn dir jetzt ein Epsilon gegeben wird, für jedes n [mm] \ge n_0 [/mm] > [mm] \bruch{2}{\varepsilon} [/mm] die Ungleichung gilt (d.h. die [mm] a_n [/mm] nah genug dranliegen).
Als Beispiel:
Jetzt gibt dir jemand [mm] \varepsilon [/mm] = 0,1
Dann gilt: [mm] n_0 [/mm] > [mm] \bruch{2}{0,1} [/mm] = 20
D.h. für a_21, a_22 .... usw gilt [mm] |a_n [/mm] - a| < 0,1
MfG,
Gono.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:22 Fr 20.07.2007 | Autor: | fisch000 |
Endlich habe ich diesen Mist mit dem Grenzwert mal verstanden. Vielen Dank für deine tolle Antwort.
MfG
|
|
|
|