matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBeweis: Extrema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Beweis: Extrema
Beweis: Extrema < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Extrema: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 14:15 Fr 06.12.2013
Autor: Kartoffelchen

Aufgabe
Ich habe eine Frage zu einer Beweisführung. Der Vollständigkeit halber folgt der komplette Beweis bis zur unklaren Stelle

Die Funktion f:I -> [mm] $\mathbb{R}$ [/mm] sei n-mal (n größergleich 2) stetig differenzierbar auf einem offenen Intervall I.

Sei f'(a) = f''(a) = ... = [mm] $f^{n-1}(a) [/mm] = 0$ und [mm] $f^n [/mm] (a) [mm] \not [/mm] = 0$.

Ist n ungerade, so besitzt f in a kein lokales Extremum.
Ist n gerade, so hat f für [mm] $f^n(a) [/mm] > 0$ in a ein lokales Minimum, für [mm] $f^n(a) [/mm] < 0$ in a ein lokales Maximum.

BEWEIS
Sei $ [mm] f^n(a) [/mm] > 0$. Wegen der Stetigkeit von [mm] $f^n$ [/mm] gilt:

[mm] $\exists [/mm] r > 0$ sodass $(a-r, a+r) [mm] \subseteq [/mm] I$ und [mm] $f^n(x) [/mm] > 0$ für $|x-a| < r$.

Für $ h [mm] \in \mathbb{R}$ [/mm] mit $ 0 < |h| < r$ gilt nach der Taylorformel:
$f(a+h) = f(a) + [mm] \frac{f'(a)}{1!}h [/mm] + ... + [mm] \frac{f^{n-1}(a)}{(n-1)!}h^{n-1} [/mm] + [mm] \frac{f^n (a + vh)}{n!}h^n$ [/mm]
Es folgt:
$f(a+h) - f(a) =  [mm] \frac{f^n (a + vh)}{n!}h^n$ [/mm] (da nach Voraussetzung gewisse Ableitungen in a gleich Null sind) [ mit 0 < v < 1 ]

Für gerades n folgt: $f(a+h) - f(a) > 0 [mm] \implies [/mm] f(a+h) > f(a)$
____________________


Es geht mir um den letzten Schritt. Hier soll noch gezeigt werden, warum das so ist.
Warum darf ich davon ausgehen, dass  [mm] $\frac{f^n (a + vh)}{n!}h^n$ [/mm] für gerades n größer Null ist? Was weiß ich denn von [mm] $f^n(a [/mm] + vh)$ ?

        
Bezug
Beweis: Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Fr 06.12.2013
Autor: Gonozal_IX

Hiho,

der Beweis beginnt doch mit:

>  Sei [mm]f^n(a) > 0[/mm]. Wegen der Stetigkeit von [mm]f^n[/mm] gilt:

> [mm]\exists r > 0[/mm] sodass [mm](a-r, a+r) \subseteq I[/mm] und [mm]f^n(x) > 0[/mm] für [mm]|x-a| < r[/mm].


> Was weiß ich denn von [mm]f^n(a + vh)[/mm] ?  

Für ausreichend kleine h liegt a+vh doch sehr nah an a und dann verwende obiges.

Gruß,
Gono.


Bezug
                
Bezug
Beweis: Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 Fr 06.12.2013
Autor: Kartoffelchen

Hallo!

Wenn das so in Ordnung ist werde ich das gerne tun :)
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]