matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungBeweis AUFGABE
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - Beweis AUFGABE
Beweis AUFGABE < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis AUFGABE: AUFGABE
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:06 Di 09.11.2004
Autor: SERIF

So Mathe Genies Ich muss diese Aufgabe beweisen? Wer hilft mir. Ich kann nur induktionsanfang n=1 und weiter?

[mm] \forall [/mm] x [mm] \ge [/mm] 0   [mm] \forall [/mm] n [mm] \in \IN [/mm]

                                                                                                                    
[m] (1+x)^{n} \ge 1+nx+ \frac{n(n-1)}{2} x^{2} + \frac{n(n-1)(n-2)}{6} x^{3} + \frac{n(n-1)(n-2)(n-3)}{24} x^{4}[/m]
  
   die Zahlen 2, 6, und 24 sind unterm Strich. also Nenner !                                           

        
Bezug
Beweis AUFGABE: Tipp
Status: (Antwort) fertig Status 
Datum: 19:23 Di 09.11.2004
Autor: Astrid

Hallo!


> So Mathe Genies Ich muss diese Aufgabe beweisen? Wer hilft
> mir. Ich kann nur induktionsanfang n=1 und weiter?

Meiner Meinung nach müßtest du für den Induktionsanfang n=0 nehmen, aber das erleichtert den Anfang noch mehr...

>  
> [mm]\forall[/mm] x [mm]\ge[/mm] 0   [mm]\forall[/mm] n [mm]\in \IN [/mm]
>  
>
> [mm](1+x)^{n} \ge 1+nx+ \frac{n(n-1)}{2} x^{2} + \frac{n(n-1)(n-2)}{6} x^{3} + \frac{n(n-1)(n-2)(n-3)}{24} x^{4}[/mm]
>  

Da ich nicht weiß, wie weit du in deinen Überlegungen schon bist, gebe ich dir einen Tipp für den Induktionsschritt:

Du nimmst also für ein [mm]n \in \IN[/mm] als Voraussetzung an, dass gilt:
[mm](1+x)^{n} \ge 1+nx+ \frac{n(n-1)}{2} x^{2} + \frac{n(n-1)(n-2)}{6} x^{3} + \frac{n(n-1)(n-2)(n-3)}{24} x^{4}[/mm]

Jetzt mußt du zeigen:
[mm](1+x)^{n+1} \ge 1+(n+1)x+ \frac{(n+1)(n)}{2} x^{2} + \frac{(n+1)(n)(n-1)}{6} x^{3} + \frac{(n+1)(n)(n-1)(n-2)}{24} x^{4}[/mm]   [mm] \red{(1)} [/mm]

(Ich habe nur n durch n+1 ersetzt.)



Beginne am besten so:
[mm](1+x)^{n+1}=(1+x)*(1+x)^n \ge [/mm] (nach Voraussetzung da x [mm] \ge [/mm] 0)
[mm](1+x) \ * \ (1+nx+ \frac{n(n-1)}{2} x^{2} + \frac{n(n-1)(n-2)}{6} x^{3} + \frac{n(n-1)(n-2)(n-3)}{24} x^{4})[/mm]

Jetzt mußt du leider mit diesem (zugegebenermaßen unübersichtlichen) Term weiterarbeiten:
Löse die Klammern auf und dann schaue, was du zusammenfassen kannst, damit du letztendlich auf den Term [mm] \red{(1)} [/mm] kommst.

Wenn du Probleme dabei hast, poste doch deine konkreten Fragen!
Gruß,
Astrid

Bezug
                
Bezug
Beweis AUFGABE: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:23 Di 09.11.2004
Autor: SERIF

Danke. Genau da liegt mein Problem.  Ich komme auf die Lösung nicht. Die Lösung kennt man ja schon. Aber der Weg nach Lösung ist für mich schwer. Kannst du bitte weiter machen, bis zu Lösung? Danke.

Bezug
                        
Bezug
Beweis AUFGABE: weitergerechnet
Status: (Antwort) fertig Status 
Datum: 22:43 Di 09.11.2004
Autor: informix

Hallo SERIF,
es geht darum, diesen Ausdruck auzumultiplizieren:
$ (1+x) \ [mm] \cdot{} [/mm] \ (1+nx+ [mm] \frac{n(n-1)}{2} x^{2} [/mm] + [mm] \frac{n(n-1)(n-2)}{6} x^{3} [/mm] + [mm] \frac{n(n-1)(n-2)(n-3)}{24} x^{4}) [/mm] $

[mm]= 1*(1+nx+ \frac{n(n-1)}{2} x^{2} + \frac{n(n-1)(n-2)}{6} x^{3} + \frac{n(n-1)(n-2)(n-3)}{24} x^{4})[/mm]
[mm]+x*(1+nx+ \frac{n(n-1)}{2} x^{2} + \frac{n(n-1)(n-2)}{6} x^{3} + \frac{n(n-1)(n-2)(n-3)}{24} x^{4})[/mm]
[mm]=(1+nx+ \frac{n(n-1)}{2} x^{2} + \frac{n(n-1)(n-2)}{6} x^{3} + \frac{n(n-1)(n-2)(n-3)}{24} x^{4})[/mm]
[mm]+x+nx^2+ \frac{n(n-1)}{2} x^{3} + \frac{n(n-1)(n-2)}{6} x^{4} + \frac{n(n-1)(n-2)(n-3)}{24} x^{5})[/mm]
Durch exaktes Untereinanderschreiben der Terme mit gleicher x-Potenz bekommst du mehr Übersicht:
[mm]=1+(n+1)x+( \frac{n(n-1)}{2}+n)x^2 {...}x^4+\mbox{irgendwas}*x^5[/mm]
Den Term mit [mm] $x^5$ [/mm] kannst du weglassen, da er positiv ist, verkleinerst du damit den gesamten Ausdruck.
Fasst du mal die Terme vor den [mm] $x^{..}$ [/mm] zusammen? Dann sollten die gewünschten Terme von oben erscheinen. Ist ziemlich aufwendig mit dem Formeleditor (auch wenn ich ihn sonst liebe ;-)).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]