matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungBewegungsinvariante
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Bewegungsinvariante
Bewegungsinvariante < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bewegungsinvariante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Mo 27.03.2006
Autor: hurdel

Aufgabe
Für ein Dreieck a,b,c in [mm] \IR^{2} [/mm] sei s:= [mm] \bruch{1}{3}(a+b+c).Dann [/mm] ist die Abbildung [mm] (a,b,c)\mapsto [/mm] |s-a| + |s-b|+|s-c| eine Bewegungsinvariante.

brauche sehr dringend hilfe. ich weiss doch, dass [mm] |x+y+z|\ge [/mm] |x|+|y|+|z|. wenn hier das gleichheitszeichen stehen würde, wäre alles klar. aber so?

habe diese frage in keinem anderen forum gestellt

        
Bezug
Bewegungsinvariante: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Mo 27.03.2006
Autor: topotyp

Dies ist wirklich nicht schwer. Bewegung ist geg durch x-> [mm] Ax+x_0 [/mm]
mit [mm] x_0 [/mm] fester vektor und A eine orthogonale matrix.
Na ja einsetzen und ausrechnen!
Also s-a geht über in A(a-s) (nachrechnen: [mm] x_0 [/mm] kürzt sich raus!!!)
und weil orhthognale matrizen die norm erhalten, folgt die behauptung
also |A(a-s)|=|a-s|. (Wobei ich mal annehme dass a,b,c die Eckpunkte
des Dreiecks darstellen sollen...)

Bezug
                
Bezug
Bewegungsinvariante: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:26 Sa 01.04.2006
Autor: hurdel

und wie kann ich das nachrechnen? was muss ich da wo einsetzen? wie kann ich sehen, dass sich x0 rauskürzt? bin irgendwie total überfordert. wahrscheinlich steh ich auf dem schlauch

Bezug
                        
Bezug
Bewegungsinvariante: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 03.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]