matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBew.: Gleichmäßige Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Bew.: Gleichmäßige Konvergenz
Bew.: Gleichmäßige Konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bew.: Gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Fr 21.05.2010
Autor: WiebkeMarie

Aufgabe
Sei X ein metrischer Raum. Seien [mm] (f_n)_{n \in \IN} [/mm] und [mm] (g_n)_{n \in \IN} [/mm] Folgen in C(X) (dies ist der Raum der stetigen, beschränkten Funktionen von X in [mm] \IC). [/mm] Die Folge [mm] (f_n)_{n \in \IN} [/mm] konvergiere gleichmäßig gegen f und die Folge [mm] (g_n)_{n \in \IN} [/mm] konvergiere gleichmäßig gegen g.

Zeigen Sie, dass [mm] (f_n g_n)_{n \in \IN} [/mm] gleichmäßig gegen fg konvergiert.
Hinweis: [mm] \parallel fg-f_n g_n \parallel [/mm] = [mm] \parallel f(g-g_n) [/mm] + [mm] (f-f_n)g_n \parallel [/mm]

Hallo!

Es ist zu zeigen: [mm] \parallel f(g-g_n)+(f-f_n)g_n \parallel \le \epsilon [/mm]

Bin mit dem Hinweis gestartet:

[mm] \parallel f(g-g_n)+(f-f_n)g_n \parallel [/mm]
= [mm] \parallel [/mm] f [mm] \parallel \cdot \parallel g-g_n\parallel [/mm] + [mm] \parallel f-f_n \parallel \cdot \parallel g_n \parallel [/mm]

(Da [mm] (f_n)_{n \in \IN} [/mm] und [mm] (g_n)_{n \in \IN} [/mm] gleichmäßig konvergieren gilt:)

[mm] \le \parallel [/mm] f [mm] \parallel \cdot \epsilon_1 [/mm] + [mm] \epsilon_2 \cdot \parallel g_n \parallel [/mm]

Mein nächster Gedanke war, dass ich f und [mm] f_n [/mm] abschätzen kann, da sie beschränkt sind.
Seien [mm] m_1 [/mm] obere Schranke von [mm] \parallel [/mm] f [mm] \parallel [/mm] und [mm] m_2 [/mm] obere Schranke von [mm] \parallel g_n \parallel. [/mm]

[mm] \le m_1 \cdot \epsilon_1 [/mm] + [mm] m_2 \cdot \epsilon_2 [/mm] := [mm] \epsilon [/mm]

Hier bin ich mir unsicher. Darf ich das Epsilon so definieren? Denn damit würde es ja von [mm] m_1 [/mm] und [mm] m_2 [/mm] abhängen oder?

Vielen Dank schonmal!
Liebe Grüße, WiebkeMarie

        
Bezug
Bew.: Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Fr 21.05.2010
Autor: statler

Hallo!

> Sei X ein metrischer Raum. Seien [mm](f_n)_{n \in \IN}[/mm] und
> [mm](g_n)_{n \in \IN}[/mm] Folgen in C(X) (dies ist der Raum der
> stetigen, beschränkten Funktionen von X in [mm]\IC).[/mm] Die Folge
> [mm](f_n)_{n \in \IN}[/mm] konvergiere gleichmäßig gegen f und die
> Folge [mm](g_n)_{n \in \IN}[/mm] konvergiere gleichmäßig gegen g.
>  
> Zeigen Sie, dass [mm](f_n g_n)_{n \in \IN}[/mm] gleichmäßig gegen
> fg konvergiert.
> Hinweis: [mm]\parallel fg-f_n g_n \parallel[/mm] = [mm]\parallel f(g-g_n)[/mm]
> + [mm](f-f_n)g_n \parallel[/mm]

> Es ist zu zeigen: [mm]\parallel f(g-g_n)+(f-f_n)g_n \parallel \le \epsilon[/mm]
>  
> Bin mit dem Hinweis gestartet:
>  
> [mm]\parallel f(g-g_n)+(f-f_n)g_n \parallel[/mm]
>  = [mm]\parallel[/mm] f
> [mm]\parallel \cdot \parallel g-g_n\parallel[/mm] + [mm]\parallel f-f_n \parallel \cdot \parallel g_n \parallel[/mm]
>  
> (Da [mm](f_n)_{n \in \IN}[/mm] und [mm](g_n)_{n \in \IN}[/mm] gleichmäßig
> konvergieren gilt:)
>  
> [mm]\le \parallel[/mm] f [mm]\parallel \cdot \epsilon_1[/mm] + [mm]\epsilon_2 \cdot \parallel g_n \parallel[/mm]
>  
> Mein nächster Gedanke war, dass ich f und [mm]f_n[/mm] abschätzen
> kann, da sie beschränkt sind.
>  Seien [mm]m_1[/mm] obere Schranke von [mm]\parallel[/mm] f [mm]\parallel[/mm] und [mm]m_2[/mm]
> obere Schranke von [mm]\parallel g_n \parallel.[/mm]
>  
> [mm]\le m_1 \cdot \epsilon_1[/mm] + [mm]m_2 \cdot \epsilon_2[/mm] :=
> [mm]\epsilon[/mm]
>  
> Hier bin ich mir unsicher. Darf ich das Epsilon so
> definieren? Denn damit würde es ja von [mm]m_1[/mm] und [mm]m_2[/mm]
> abhängen oder?

Das [mm] \varepsilon [/mm] ist vorgegeben, suchen mußt du die beiden [mm] \varepsilon_i. [/mm] Aber dafür kannst du z. B. [mm] \varepsilon_1 [/mm] := [mm] \bruch{\varepsilon}{2m_1} [/mm] (oder kleiner) nehmen.

Noch genauer suchst du zu dem gegebenen [mm] \varepsilon [/mm] ein [mm] n_0 [/mm] so, daß für alle ....

Frohe Pfingsten aus HH-Harburg
Dieter

Bezug
                
Bezug
Bew.: Gleichmäßige Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Fr 21.05.2010
Autor: WiebkeMarie

Super danke!
Jetzt hab ichs verstanden. Klar gleichmäßige Konvergenz heißt ja es gilt für alle, also kann ich mir auch welche wählen...
Danke!! ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]