matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionen(Bevölkerungs-) wachstum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - (Bevölkerungs-) wachstum
(Bevölkerungs-) wachstum < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Bevölkerungs-) wachstum: Lösungsvorschlag/ Tipp
Status: (Frage) beantwortet Status 
Datum: 15:10 Do 26.01.2006
Autor: korny-matsch

Aufgabe
Auf dem Kontinent Afrika beträgt die Wachstumsrate der Bevölkerung 1,94%                        (Fläche: 30,3 Mio. km², momentane Einwohnerzahl: 675 Millionen).
Wenn man von einer Fläche von 1m² pro Mensch ausgeht, wann ist dieser Kontinent komplett überbevölkert?

also zuerst muss ich die fläche in m² umrechnen, damit ich weiß wieviele menschen überhaupt drauf passen. das ergebnis dann minus die momentane einwohnerzahl, dann weiß ich wieviele menschen noch dazu kommen können.

--> aber wie berechne ich anhand der wachstumsrate die zeit, bis afrika überbevölkert ist??



(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
(Bevölkerungs-) wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Do 26.01.2006
Autor: Zwerglein

Hi, korny,

> Auf dem Kontinent Afrika beträgt die Wachstumsrate der
> Bevölkerung 1,94%                        (Fläche: 30,3 Mio.
> km², momentane Einwohnerzahl: 675 Millionen).
>  Wenn man von einer Fläche von 1m² pro Mensch ausgeht, wann
> ist dieser Kontinent komplett überbevölkert?
>  also zuerst muss ich die fläche in m² umrechnen, damit ich
> weiß wieviele menschen überhaupt drauf passen.

Das wären dann also [mm] 3,03*10^{13} [/mm] Menschen.

> das ergebnis
> dann minus die momentane einwohnerzahl, dann weiß ich
> wieviele menschen noch dazu kommen können.

Das brauchst Du nicht: In der Wachstumsrate sind diejenigen, die dann evtl. noch leben, bereits berücksichtigt.
  

> --> aber wie berechne ich anhand der wachstumsrate die
> zeit, bis afrika überbevölkert ist??

Ansatz: [mm] 675^*10^{6}*(1,0194)^{t} [/mm] = [mm] 3,03*10^{13} [/mm]   (T = Zeit in Jahren)

Vereinfachen: [mm] (1,0194)^{t} [/mm] = 44888,9  | lg(...)
t*lg(1,0194) = lg(44888,9)
t = [mm] \bruch{lg(44888,9)}{lg(1,0194)} \approx [/mm] 557,5.

Nach etwa 558 Jahren wäre Afrika komplett überbevölkert.

(Keine Garantie für Rechenfehler!)

mfG!
Zwerglein

Bezug
                
Bezug
(Bevölkerungs-) wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:01 Fr 27.01.2006
Autor: korny-matsch

ah ja danke! ist ja eigentlich ganz simpel....hat das verfahren überhaupt einen bestimmten namen oder oberbegriff?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]