matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungBetrag von Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Betrag von Mengen
Betrag von Mengen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betrag von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 Do 08.11.2007
Autor: abi2007LK

Hallo,

noch eine Aufgabe:

Untersuchen Sie, ob die Relation [mm] \sim [/mm] in der Menge M Äquivalenzrelation ist.

M := [mm] \mathcal{P}(\IR) [/mm] und [mm] \sim [/mm] ist gegeben durch:

A [mm] \sim [/mm] B [mm] :\gdw [/mm] |A [mm] \Delta [/mm] B| < [mm] \infty [/mm]

Wunderbar. Äquivalenzrelation dann, falls Relfexivität gezeigt werden kann.

Das ist trivial, da |A [mm] \Delta [/mm] A| = [mm] \emptyset [/mm]

[mm] \emptyset [/mm] hat in jedem Fall weniger als [mm] \infty [/mm] Elemente.

Aber nun habe ich Probleme die Symmetrie zu zeigen.

A, B [mm] \in [/mm] M

ist dann |A [mm] \Delta [/mm] B| überhaupt endlich?


        
Bezug
Betrag von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Do 08.11.2007
Autor: o.tacke

Hallo!

Du musst ja zum Glück nicht zeigen, ob [mm] |{A}\Delta{B}|=\infty [/mm] ist oder nicht.

Du musst für den Beweis der Symmetrie "nur" zeigen, dass wenn [mm] |{A}\Delta{B}|<\infty [/mm] ist daraus folgt, dass dann [mm] |{B}\Delta{A}|<\infty [/mm] gilt.


Bezug
                
Bezug
Betrag von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:58 Do 08.11.2007
Autor: abi2007LK

Dir sei gedankt.

Bezug
                        
Bezug
Betrag von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 So 11.11.2007
Autor: Raphen

Wenn Du eine Lösung gefunden hast, wäre nett wenn Du sie reinschreiben könntest :-) weil hänge am selben Problem.

Bezug
                
Bezug
Betrag von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 So 11.11.2007
Autor: dalex

soll das heißen das man für die transivität auch nur zeigen muss, dass aus |A [mm] \Delta [/mm] B| [mm] \wedge [/mm] |B [mm] \Delta [/mm] C| [mm] \Rightarrow|A \Delta [/mm] C| folgt? und das überhaupt nicht [mm] <\infty [/mm] sein muss?

wie soll das aussehen?

Bezug
                        
Bezug
Betrag von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Mo 12.11.2007
Autor: Bastiane

Hallo dalex!

> soll das heißen das man für die transivität auch nur zeigen
> muss, dass aus |A [mm]\Delta[/mm] B| [mm]\wedge[/mm] |B [mm]\Delta[/mm] C|
> [mm]\Rightarrow|A \Delta[/mm] C| folgt? und das überhaupt nicht
> [mm]<\infty[/mm] sein muss?

Nein, was soll denn $|A [mm] \Delta [/mm] C|$ sein? Also was möchtest du zeigen, dass es ist? Du musst zeigen, dass wenn [mm] $|A\Delta B|<\infty$ [/mm] und [mm] $|B\Delta C|<\infty$, [/mm] dass dann auch [mm] $|A\Delta C|<\infty$ [/mm] gilt.

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]