matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisBetrag des Produkts
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Betrag des Produkts
Betrag des Produkts < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betrag des Produkts: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Mi 14.11.2007
Autor: buchstabe

Aufgabe
Zeige mit
[mm] |a+bi|^{2}=a^{2}+b^{2} [/mm]
[mm] a,b\in\IR [/mm]
dass
[mm] |z_{1}*z_{2}|=|z_{1}|*|z_{2}| [/mm]
[mm] z_{1},z_{2}\in\IC [/mm]

[Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.]

Hallo,

ich habe mich daran schon versucht, bin aber m.E. auf kein korrektes Ergebnis gekommen. Hat jemand interesse, sich daran zu versuchen? Man soll also zeigen, dass der Betrag des Produkts gleich dem Produkt der Beträge komplexer Zahlen ist.

        
Bezug
Betrag des Produkts: einsetzen
Status: (Antwort) fertig Status 
Datum: 19:07 Mi 14.11.2007
Autor: Loddar

Hallo buchstabe,

[willkommenmr] !!


Das nächste Mal doch bitte auch Deine Rechenversuche / Ansätze mitposten, damit wir Deinen Fehler finden können.

Setze in die entsprechenden Terme wie folgt ein und wende die gegebene Formel an:
[mm] $$z_1 [/mm] \ := \ a+i*b$$
[mm] $$z_2 [/mm] \ := \ x+i*y$$

[mm] $$\left|z_1*z_2\right| [/mm] \ = \ [mm] \left|(a+i*b)*(x+i*y)\right| [/mm] \ = \ ...$$
[mm] $$\left|z_1\right|*\left|z_2\right| [/mm] \ = \ [mm] \left|a+i*b\right|*\left|x+i*y\right| [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
                
Bezug
Betrag des Produkts: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Mi 14.11.2007
Autor: buchstabe

Aufgabe
[mm] |a+bi|^{2} [/mm] = [mm] a^{2}+b^{2} [/mm]
|a+bi| = [mm] \wurzel{a^{2}+b^{2}} [/mm]

Im Folgenden [mm] z_{1} [/mm] = [mm] z_{2} [/mm]

[mm] |z_{1}z_{2}| [/mm] = [mm] |z_{1}| [/mm] * [mm] |z_{2}| [/mm]
[mm] |(a+bi)^{2}| [/mm] = [mm] \wurzel{a^{2}+b^{2}} \wurzel{a^{2}+b^{2}} [/mm]
[mm] |(a+bi)^{2}| [/mm] = [mm] a^{2}+b^{2} [/mm]
[mm] (a+bi)^{2} [/mm] = [mm] (a+bi)^{2} [/mm]

Danke für die schnelle Antwort. Für mein Matheverständnis war sie allerdings nicht ausführlich genug. Mit dem, was da steht, habe ich ja noch nicht gezeigt, dass
[mm] |z_{1}z_{2}| [/mm] = [mm] |z_{1}| [/mm] * [mm] |z_{2}| [/mm]
Kann man es so wie im geposteten Aufgabenfeld lösen? Ich habe [mm] z_{1} [/mm] = [mm] z_{2} [/mm] gesetzt, um die Gleichung umzustellen. Ist das in Ordnung, wenn es für alle z gelten muss?

Bezug
                        
Bezug
Betrag des Produkts: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Do 15.11.2007
Autor: rainerS

Hallo!

> [mm]|a+bi|^{2}[/mm] = [mm]a^{2}+b^{2}[/mm]
>  |a+bi| = [mm]\wurzel{a^{2}+b^{2}}[/mm]
>  
> Im Folgenden [mm]z_{1}[/mm] = [mm]z_{2}[/mm]
>  
> [mm]|z_{1}z_{2}|[/mm] = [mm]|z_{1}|[/mm] * [mm]|z_{2}|[/mm]
>  [mm]|(a+bi)^{2}|[/mm] = [mm]\wurzel{a^{2}+b^{2}} \wurzel{a^{2}+b^{2}}[/mm]
>  
> [mm]|(a+bi)^{2}|[/mm] = [mm]a^{2}+b^{2}[/mm]
>  [mm](a+bi)^{2}[/mm] = [mm](a+bi)^{2}[/mm]
>  Danke für die schnelle Antwort. Für mein Matheverständnis
> war sie allerdings nicht ausführlich genug. Mit dem, was da
> steht, habe ich ja noch nicht gezeigt, dass
>  [mm]|z_{1}z_{2}|[/mm] = [mm]|z_{1}|[/mm] * [mm]|z_{2}|[/mm]
>  Kann man es so wie im geposteten Aufgabenfeld lösen? Ich
> habe [mm]z_{1}[/mm] = [mm]z_{2}[/mm] gesetzt, um die Gleichung umzustellen.
> Ist das in Ordnung, wenn es für alle z gelten muss?

Leider nicht, denn du hast nur einen Spezialfall angeschaut.

Setze: [mm]z_1=a_1+ib_1[/mm] und [mm]z_2=a_2+ib_2[/mm].

Dann multiplizierst du aus.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]