matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungBestimmung v orthogonalen Vekt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Bestimmung v orthogonalen Vekt
Bestimmung v orthogonalen Vekt < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung v orthogonalen Vekt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 So 20.05.2007
Autor: Vicky89

Aufgabe
Bestimmt die Vektoren, die zu [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] orthogonal sind.
[mm] \vec{a} [/mm] = [mm] \vektor{1 \\ 3 \\ 2} [/mm]
[mm] \vec{b} [/mm] = [mm] \vektor{2 \\ 0 \\ 5} [/mm]

Ich bin bis jetzt nur so weit, dass [mm] \vec{a} [/mm] * [mm] \vec{b} [/mm] = 0 sein muss.
Also auch
1*x1+3*x2+2*x3 = 0
und
2*x1+0*x2+5*x3 = 0

oder?

aber wie mache ich jetzt weiter?!

        
Bezug
Bestimmung v orthogonalen Vekt: umstellen
Status: (Antwort) fertig Status 
Datum: 17:29 So 20.05.2007
Autor: Loddar

Hallo Vicky!


Normalerweise müsstest Du aus diesen beiden Gleichungen nun eine der Variablen eliminieren. Das ist in der 2. Gleichung aber bereits mit [mm] $x_2$ [/mm] geschehen.

Wähle Dir als für [mm] $x_1$ [/mm] oder [mm] $x_3$ [/mm] eine beliebige Zahl (oder setze als Parameter $t_$ ) und setzte das in die 1. Gleichung ein.


Gruß
Loddar


Bezug
                
Bezug
Bestimmung v orthogonalen Vekt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 So 20.05.2007
Autor: Vicky89

hallo loddar,
danke für die antwort.
daran habe ich auch schon gedacht, aber ich komme so nciht weiter, deswegen dachte ich mein ansatz wäre falsch.
wenn ich aber nun t für x1 einsetze, erhalte ich die gleichung

t+3x2+2x3=0

ich weiß immernoch nicht, wie mir das weiterhelfen kann.....

lg

Bezug
                        
Bezug
Bestimmung v orthogonalen Vekt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 20.05.2007
Autor: schachuzipus

Hi,

wenn du [mm] $x_1=t$ [/mm] in die 2. Gleichung einsetzt, bekommst du [mm] $x_3$ [/mm] heraus.

Dann setze [mm] $x_1=t$ [/mm] und [mm] $x_3=...$ [/mm] in die 1. Gleichung ein. Das liefert dir [mm] $x_2$ [/mm]

Alle Komponenten [mm] $x_1,x_2,x_3$ [/mm] sind dann in $t$ ausgedrückt


LG

schachuzipus


Bezug
                                
Bezug
Bestimmung v orthogonalen Vekt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 So 20.05.2007
Autor: Vicky89

ohja, danke.. hätte mal genauer drüber nachdenken sollen. nur als ich bei loddars antwort gelesen hab, ich soll es in die erste gleichung einsetzen, kam ich nicht weiter, und hab auch nicht mehr wirklich überlegt....


lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]