Bestimmung eines Parameters < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:27 Mi 30.12.2009 | Autor: | Bluma89 |
[mm] A_{t} [/mm] = [mm] \pmat{ t-1 & 0 & 0 \\ 1 & t & 0 \\ 0 & 1 & t+1 } [/mm] und b= [mm] \pmat{-6 \\ 2 \\ 1 } [/mm] ; t Element aus R
Für welche Werte von t hat das GS [mm] A_{t} [/mm] * [mm] \vec{x} [/mm] = b genau eine, keine und unendlich viele Lösungen?
Hallo erstmal, zur Vorbereitung einer Matheklausur gab es o.g. Aufgabe
Leider konnte ich bisher keinen Lösungsweg finden. Kann mir evtl jemd. Hilfestellung geben? Es handelt sich lediglich um diese Aufgabe. Was ich nicht verstehe, wie es aufzulösen ist. Klar ist, dass 2 und 1 getauscht werden, aber weiter hört es auch schon auf.
Aufgelöst soll herauskommen:
[mm] \pmat{ 1 & t & 0 & 2 \\ 0 & 1 & t+1 & 1 \\ 0 & 0 & t^{3}-t & t^{2}-3t-4 }
[/mm]
Für t=0 soll das LGS unlösbar sein (das ist mir klar (3.Zeile))
Für t=1 soll das LGS unlösbar sein (auch klar (3.Zeile))
Für t=-1 soll das LGS mehrdeutig lösbar sein weg 0=0 (wieso das, wie komm ich drauf?)
Als Anschlussatz steht drunter: Das LGS ist eindeutig lösbar für t Elemtent aus [mm] R\{-1, 0, 1}
[/mm]
Zur Lösung: Wie kann es sein, dass etwas, was unlösbar, bzw mehrdeutig lösbar ist, dann doch eindeutig lösbar sein soll?
Besten Dank schonmal im Vorraus
So, ich hoffe es geht so...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
> [mm]A_{t}[/mm] = [mm]\pmat{ t-1 & 0 & 0 \\ 1 & t & 0 \\ 0 & 1 & t+1 }[/mm]
> und b= [mm]\pmat{-6 \\ 2 \\ 1 }[/mm] ; t Element aus R
>
> Für welche Werte von t hat das GS [mm]A_{t}[/mm] * [mm]\vec{x}[/mm] = b
> genau eine, keine und unendlich viele Lösungen?
>
> Hallo erstmal, zur Vorbereitung einer Matheklausur gab es
> o.g. Aufgabe
>
> Leider konnte ich bisher keinen Lösungsweg finden. Kann
> mir evtl jemd. Hilfestellung geben? Es handelt sich
> lediglich um diese Aufgabe. Was ich nicht verstehe, wie es
> aufzulösen ist. Klar ist, dass 2 und 1 getauscht werden,
> aber weiter hört es auch schon auf.
>
>
> Aufgelöst soll herauskommen:
>
> [mm]\pmat{ 1 & t & 0 & 2 \\ 0 & 1 & t+1 & 1 \\ 0 & 0 & t^{3}-t & t^{2}-3t-4 }[/mm]
>
Nun zunächst einmal ist es das Ziel deine Matrix in Dreiecksform zu bringen. Ich sehe momentan nicht warum du zu der Annahme kommst dass 2 und 1 getauscht werden. Wie bringst du eine matrix in Zeilenstufenform? Mit dieversen Rechenoperationen die erlaubt sind. Zum einem die Multiplikation einer Zeile mit einer Zahl [mm] \not=0. [/mm] Das Vertauschen von Zeile und das Addieren von Zeilen.
Einfach anfangen. Multipliziere zunöchst die 2. Zeile mit -(t+1) und addiere die erste Zeile zur 2. Zeile. [mm] a_{21} [/mm] wird zu Null. Das machst du so lange bis du auf die gewünschte Matrix kommst (P.S ich habe die Matrix nicht nachgerechnet welcher in der Musterlösung angegeben ist).
> Für t=0 soll das LGS unlösbar sein (das ist mir klar
> (3.Zeile))
> Für t=1 soll das LGS unlösbar sein (auch klar
> (3.Zeile))
> Für t=-1 soll das LGS mehrdeutig lösbar sein weg 0=0
> (wieso das, wie komm ich drauf?)
>
So schauen wir uns nun die Matrix an. Klar sollte der erste und zweite Fall sein. Was passiert denn wenn du -1 für das t einsetzt? Die dritte Zeile fällt weg. Was ist dann mit der Matrix? Sie ist unterbestimmt. Ergo. Es gibt unendlich viele Lösungen in diesem Fall.
> Als Anschlussatz steht drunter: Das LGS ist eindeutig
> lösbar für t Elemtent aus [mm]R\{-1, 0, 1}[/mm]
>
Das soll wahrscheinlich gemeint sein: [mm] \IR [/mm] \ {-1,0,1}
> Zur Lösung: Wie kann es sein, dass etwas, was unlösbar,
> bzw mehrdeutig lösbar ist, dann doch eindeutig lösbar
> sein soll?
>
Ganz einfach: Das LGS ist halt nur eindeutig lösbar wenn [mm] t\not=1 [/mm] oder [mm] t\not=-1 [/mm] oder [mm] t\not=0. [/mm] Für t darfst du ja alle möglichen Zahlen einsetzen. Du hast ja eine Matrix gegeben die einen freien Parameter enthält für den du diverse Zahlen einsetzen kannst. Aber für alle Zahlen ausser die ausgeschlossenen 3 Zahlen ist das System eben nicht eindeutig lösbar.
> Besten Dank schonmal im Vorraus
>
> So, ich hoffe es geht so...
>
Ja so ist es in Ordnung Das ersparrt uns auch Arbeit beim Antworten weil wir direkt Bezug zu deiner Aufgabe nehmen können mit Hilfe der Zitierfunktion.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruß
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:41 Sa 02.01.2010 | Autor: | Bluma89 |
Aufgabe | Von einem GS ist folgendes gegeben: [mm] A_{t} [/mm] = [mm] \pmat{ t-1 & 0 & 0 \\ 1 & t & 0 \\ 0 & 1 & t+1} [/mm] und [mm] \vec{b} [/mm] = [mm] \vektor{-6 \\ 2 \\ 1} [/mm] t [mm] \in \IR
[/mm]
Für welche Werte von t hat das LGS [mm] A_{t} [/mm] * [mm] \vec{x} [/mm] = b genau eine, keine oder unendlich viele Lösungen. |
Sry, deine Antwort hilft mir überhaupt nicht weiter. Wie ein LGS zu lösen ist ist mir klar. Deshalb hab ich das ganze nocheinmal in schön aufgeschrieben:
Zu meinem Ansatz:
Aus oben gegebener Aufgabe lässt sich folgendes LGS aufstellen:
[mm] A_{t} [/mm] = [mm] \pmat{ t-1 & 0 & 0 & | & -6 \\ 1 & t & 0 & | & 2 \\ 0 & 1 & t+1 & | & 1}
[/mm]
Das Ziel ist es, das LGS in Dreiecksform zu bringen, deshalb tausche ich Zeile 2 und 1, da ich somit in der ersten Zeile an Stelle 1 eine 1 stehen habe.
[mm] A_{t} [/mm] = [mm] \pmat{1 & t & 0 & | & 2 \\ t-1 & 0 & 0 & | & -6 \\ 0 & 1 & t+1 & | & 1}
[/mm]
Im Anschluss daran tausche ich Zeile 2 und 3, sodass ich in Zeile 2 an zweiter Stelle auch eine 1 stehen habe.
[mm] A_{t} [/mm] = [mm] \pmat{1 & t & 0 & | & 2 \\ 0 & 1 & t+1 & | & 1 \\ t-1 & 0 & 0 & | & -6 }
[/mm]
So nun muss ich nur noch in der dritten Zeile an dritter Stelle eine 1 hinbekommen, aber wie mache ich das?
Ich hoffe meine Frage ist nun etwas deutlicher?
#############################################
So, hier noch die Musterlösung:
Schritt01:
[mm] A_{t} [/mm] = [mm] \pmat{1 & t & 0 & | & 2 \\ t-1 & 0 & 0 & | & -4 \\ 0 & 1 & t+1 & | & 1}
[/mm]
Hab ich soweit verstanden bis auf: Warum steht hier jetzt eine -4, ich kann mir dies nur als Zahlendreher erklären.
Schritt02:
[mm] A_{t} [/mm] = [mm] \pmat{1 & t & 0 & | & 2 \\ 0 & 1 & t+1 & | & 1 \\ 0 & t^{2} - t & 0 & | & 2t +4 }
[/mm]
Wie kommt man hier auf die letzte Zeile? Welche Umformung wurden gemacht?
Schritt03:
[mm] A_{t} [/mm] = [mm] \pmat{1 & t & 0 & | & 2 \\ 0 & 1 & t+1 & | & 1 \\ 0 & 0 & t^{3} - t & | & t^{2} 3t -4 }
[/mm]
Auch hier hab ich ka welche Umformungen zur Zeile 3 geführt haben sollen?
Es wäre echt nett wenn mir jmd weiterhelfen könnte, um die Schritte zu verstehen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:18 Sa 02.01.2010 | Autor: | M.Rex |
Hallo und
> Von einem GS ist folgendes gegeben: [mm]A_{t}[/mm] = [mm]\pmat{ t-1 & 0 & 0 \\ 1 & t & 0 \\ 0 & 1 & t+1}[/mm]
> und [mm]\vec{b}[/mm] = [mm]\vektor{-6 \\ 2 \\ 1}[/mm] t [mm]\in \IR[/mm]
>
> Für welche Werte von t hat das LGS [mm]A_{t}[/mm] * [mm]\vec{x}[/mm] = b
> genau eine, keine oder unendlich viele Lösungen.
> Sry, deine Antwort hilft mir überhaupt nicht weiter. Wie
> ein LGS zu lösen ist ist mir klar. Deshalb hab ich das
> ganze nocheinmal in schön aufgeschrieben:
>
> Zu meinem Ansatz:
>
> Aus oben gegebener Aufgabe lässt sich folgendes LGS
> aufstellen:
>
> [mm]A_{t}[/mm] = [mm]\pmat{ t-1 & 0 & 0 & | & -6 \\ 1 & t & 0 & | & 2 \\ 0 & 1 & t+1 & | & 1}[/mm]
>
> Das Ziel ist es, das LGS in Dreiecksform zu bringen,
> deshalb tausche ich Zeile 2 und 1, da ich somit in der
> ersten Zeile an Stelle 1 eine 1 stehen habe.
>
> [mm]A_{t}[/mm] = [mm]\pmat{1 & t & 0 & | & 2 \\ t-1 & 0 & 0 & | & -6 \\ 0 & 1 & t+1 & | & 1}[/mm]
>
> Im Anschluss daran tausche ich Zeile 2 und 3, sodass ich in
> Zeile 2 an zweiter Stelle auch eine 1 stehen habe.
>
> [mm]A_{t}[/mm] = [mm]\pmat{1 & t & 0 & | & 2 \\ 0 & 1 & t+1 & | & 1 \\ t-1 & 0 & 0 & | & -6 }[/mm]
>
> So nun muss ich nur noch in der dritten Zeile an dritter
> Stelle eine 1 hinbekommen, aber wie mache ich das?
1. Schritt: Gleichung 1 und Gleichung 3 so "verarbeiten", damit du eine 3. Gleichung der Form
[mm] \pmat{\red{0} & \Box & \Box & | & \Box }
[/mm]
bekommst.
2. Schritt: Diese Spalte mit Gleichung "verarbeiten", dass du auf eine neue 3 Gleichung der Form [mm] \pmat{\red{0} & \red{0} & \Box & | & \Box } [/mm] kommst
>
> Ich hoffe meine Frage ist nun etwas deutlicher?
>
>
>
>
> #############################################
>
> So, hier noch die Musterlösung:
>
> Schritt01:
>
> [mm]A_{t}[/mm] = [mm]\pmat{1 & t & 0 & | & 2 \\ t-1 & 0 & 0 & | & -4 \\ 0 & 1 & t+1 & | & 1}[/mm]
>
> Hab ich soweit verstanden bis auf: Warum steht hier jetzt
> eine -4, ich kann mir dies nur als Zahlendreher erklären.
Das ist auch einer.
>
> Schritt02:
>
> [mm]A_{t}[/mm] = [mm]\pmat{1 & t & 0 & | & 2 \\ 0 & 1 & t+1 & | & 1 \\ 0 & t^{2} - t & 0 & | & 2t +4 }[/mm]
>
> Wie kommt man hier auf die letzte Zeile? Welche Umformung
> wurden gemacht?
1. Schritt: (t-1)*GL1-GL2
2. Schritt: die neu entstandene Gleichung als GL3 setzen.
>
> Schritt03:
>
> [mm]A_{t}[/mm] = [mm]\pmat{1 & t & 0 & | & 2 \\ 0 & 1 & t+1 & | & 1 \\ 0 & 0 & t^{3} - t & | & t^{2} 3t -4 }[/mm]
>
> Auch hier hab ich ka welche Umformungen zur Zeile 3
> geführt haben sollen?
[mm] (t^{2}-t)*GL2-GL3
[/mm]
>
>
> Es wäre echt nett wenn mir jmd weiterhelfen könnte, um
> die Schritte zu verstehen.
>
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:42 Sa 02.01.2010 | Autor: | Tyskie84 |
Hallo,
> Sry, deine Antwort hilft mir überhaupt nicht weiter. Wie
> ein LGS zu lösen ist ist mir klar. Deshalb hab ich das
> ganze nocheinmal in schön aufgeschrieben:
>
> Zu meinem Ansatz:
>
> Aus oben gegebener Aufgabe lässt sich folgendes LGS
> aufstellen:
>
> [mm]A_{t}[/mm] = [mm]\pmat{ t-1 & 0 & 0 & | & -6 \\ 1 & t & 0 & | & 2 \\ 0 & 1 & t+1 & | & 1}[/mm]
>
> Das Ziel ist es, das LGS in Dreiecksform zu bringen,
> deshalb tausche ich Zeile 2 und 1, da ich somit in der
> ersten Zeile an Stelle 1 eine 1 stehen habe.
>
> [mm]A_{t}[/mm] = [mm]\pmat{1 & t & 0 & | & 2 \\ t-1 & 0 & 0 & | & -6 \\ 0 & 1 & t+1 & | & 1}[/mm]
>
> Im Anschluss daran tausche ich Zeile 2 und 3, sodass ich in
> Zeile 2 an zweiter Stelle auch eine 1 stehen habe.
>
> [mm]A_{t}[/mm] = [mm]\pmat{1 & t & 0 & | & 2 \\ 0 & 1 & t+1 & | & 1 \\ t-1 & 0 & 0 & | & -6 }[/mm]
>
> So nun muss ich nur noch in der dritten Zeile an dritter
> Stelle eine 1 hinbekommen, aber wie mache ich das?
>
Nun auch ich bin mir nicht ganz sicher ob du weisst wie man ein LGS löst denn bisher hast du nur irgendwelche Zeilen miteinander vertauscht. Damit kommt man selten zum Ziel. Es vereinfacht aber meistens die Operationen die man anwenden muss.
Gruß
|
|
|
|