matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenBestimmmung von Extremwerten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - Bestimmmung von Extremwerten
Bestimmmung von Extremwerten < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmmung von Extremwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 Mo 14.04.2008
Autor: Theoretix

Aufgabe
Bestimmen sie alle Extremwerte bezüglich der angebebenen Intervalle.
[mm] f(x)=\bruch{1}{4}x^{3}-3x [/mm]
I1=(-3;3)
I2=(-3;5)
[mm] I3=(-5;\infty) [/mm]

Hallo,
Wie man normale Extremwerte bestimmt ist mir klar:
man schaut zuerst nach der notwendigen Bedingung, also setzt die erste
Ableitung=0
[mm] (f'(x)=\bruch{3}{4}x^{2}-3) [/mm]
und schaut dann weiter über die hinreichende Bedingung,
ob ein Extremwert vorliegt.
Nur was ist in diesem Fall mit Intervall gemeint?
Könnte mir bitte jemand helfen?
Danke im Vorraus!
MFG

        
Bezug
Bestimmmung von Extremwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 Mo 14.04.2008
Autor: blascowitz

Hallo.
Mit hilfe der ersten Ableitung bestimmt du die lokalen extremstellen einer Funktion, also die extrema innerhalb eines Intervalls. Über die Intervallränder wird mit erste Ableitung gleich Null setzen nichts gesagt.
Du musst jetzt schauen ob an den Intervallrändern ein globales Maximum vorliegt. also den Funktionswert  an den Intervallränder prüfen. Ist der größer bzw kleiner als deine lokalen Extrema hast du ein globales Maximum über dem Intervall gefunden.
Ich hoffe ich konnte helfen
Schönen tach noch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]