Bestimme alle Funktionen f < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:00 Mi 20.09.2006 | Autor: | destilo |
Aufgabe | Bestimme alle Funktionen f mit [mm]f(x) = (x^2 + ax + b) * e^x[/mm] , die an der Stelle -1 einen Hochpunkt und an der Stelle 1 einen Tiefpunkt haben. |
Es handelt sich hierbei also um eine Steckbriefaufgabe. Wir haben zwei Unbekannte a und b. Man kann diese mit Bedingungen und einem Gleichungssystem herraus finden. Aber ich glaub bei dieser Augabe handelt es sich um eine Funktionsschar.[Nur eine Vermutung]
Es ist ein lok. Max. an der Stelle -1 vorhanden und ein lok. Min. an der Stelle 1.
Zuerst brauchen wir die Ableitung der Funktion f weil wir es hierbei mit Lokalen Extremstellen zu tun haben.
[mm]f(x) = (x^2 + ax + b) * e^x[/mm]
Um diese Fkt. abzuleiten benutze ich die Produktregel:
$ f(x) = u(x) [mm] \cdot{} [/mm] v(x) $
[mm](u*v)' = u' * v + u * v'[/mm]
[mm]u(x) = x^2 + ax + b[/mm] [mm] u'(x) = 2x + a[/mm]
[mm]v(x) = e^x [/mm] [mm] v'(x) = e^x[/mm]
darraus ergibt sich folgendes:
[mm](2x + a) * e^x + (x^2 + ax + b) * e^x = 0 / : e^x[/mm]
[mm]x^2 + 2x + ax + a + b = 0[/mm]
Also [mm]f(x)' = x^2 + 2x + ax + a + b = 0[/mm]
Die Bedingungen lauten ausgedrückt:
f'(-1) und f'(1)
Sind die Rechenwege bis hier hin richtig oder sind mir Fehler unterlaufen. Ich bitte um Hilfe und Unterstützung bei der Fortführung der Aufgabenlösung. Ich weiß nämlich jetzt nicht genau was ich hier machen soll und wie die Rechnung weiter gehen soll. Danke schon mal im Vorraus!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:23 Mi 20.09.2006 | Autor: | Fulla |
hi destilo!
also die ableitung ist erstmal [mm]f'(x)=(x^2+2x+ax+a+b)*e^x[/mm]
erst wenn du [mm]f'(x)=0[/mm] setzt, darfst du durch [mm] e^x [/mm] teilen!
aber soweit ist alles richtig.
jetzt [mm]f'(-1)=0[/mm] und [mm]f'(1)=0[/mm] ausrechnen und a und b eliminieren!
(und nachprüfen, ob es bei x=-1 ein hoch- bzw. bei x=1 ein tiefpunkt ist)
[ich komme auf a=-2 und b=1]
lieben gruß,
Fulla
|
|
|
|