matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationBestapproximation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Interpolation und Approximation" - Bestapproximation
Bestapproximation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestapproximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Di 18.07.2006
Autor: DAB268

Hallo.

Ich habe da mal eine Frage zu der Bestapproximation mit Hilfe von Tschebyscheffpolynomen.

Beziehen werde ich mich hierbei auf Aufgabe 17 a) und b) aus dem Anhang.

Bei Teil a) wird direkt gesagt, dass [mm] x^5=\bruch{1}{16}T_5(x)+\bruch{5}{16}T_3(x)+\bruch{5}{8}T_1(x) [/mm] ist.

Ich gehe mal davon aus, dass hier [mm] \bruch{1}{16}=a_5 [/mm] ist etc. und dass [mm] a_4=0 [/mm] und [mm] a_2=0. [/mm]

Nun würde ich aber gerne mal wissen, wie ich auf die [mm] a_i [/mm] komme...

Bei Teil b) wird nachdem man die x ausgeklammert hat einfach [mm] a_0-a_2+a_4=1 [/mm] gesetzt etc.

Woher kommt hierbei die 1?

Alles weitere dürfte dann ja nur noch Lösen on Gleichungssystemen sein.

Hoffe ihr könnt mir helfen.

MfG
DAB268

[a]Aufgabe
[a]Lösung


Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Anhang Nr. 2 (Typ: pdf) [nicht öffentlich]
        
Bezug
Bestapproximation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Di 18.07.2006
Autor: Bastiane

Hallo!

Also, ich bin jetzt nicht der Meister in so etwas, aber vielleicht kann ich dir trotzdem helfen:

> Bei Teil a) wird direkt gesagt, dass
> [mm]x^5=\bruch{1}{16}T_5(x)+\bruch{5}{16}T_3(x)+\bruch{5}{8}T_1(x)[/mm]
> ist.
>  
> Ich gehe mal davon aus, dass hier [mm]\bruch{1}{16}=a_5[/mm] ist
> etc. und dass [mm]a_4=0[/mm] und [mm]a_2=0.[/mm]
>  
> Nun würde ich aber gerne mal wissen, wie ich auf die [mm]a_i[/mm]
> komme...

Naja, wenn du weißt, dass du [mm] x^5 [/mm] als Linearkombination der Tschebyscheff-Polynome darstellen willst, dann müsstest du wissen, wie die Tschebyscheff-Polynome aussehen. Das findest du z. B. []hier. Dann leuchtet es wohl ein, nur "ungerade" Tschebyscheff-Polynome zu nehmen, da ja genau diese nur aus ungerade Potenzen von x bestehen, und [mm] x^5 [/mm] ja auch nur eine ungerade Potenz hat. Falls du verstehst, was ich meine...
Naja, und dann ist das doch eigenlich nur noch eine Art Koeffizientenvergleich, wenn du [mm] T_5, T_3 [/mm] und [mm] T_1 [/mm] mal hinschreibst.

> Bei Teil b) wird nachdem man die x ausgeklammert hat
> einfach [mm]a_0-a_2+a_4=1[/mm] gesetzt etc.
>  
> Woher kommt hierbei die 1?

Das ist etwas doof zu erklären, wenn man das nicht direkt vorliegen hat. Aber das ist wirklich nur Koeffizientenvergleich. Du hast ja [mm] a_0*T_0, [/mm] und in deinem Polynom hast du [mm] 1*x^0, [/mm] nämlich einfach nur eine 1 (die quasi kein x dahinter hat). Und so, wie das da steht, wenn die x ausgeklammert sind, sind halt [mm] a_0-a_2+a_4 [/mm] genau die Koeffizienten, die kein x dahinter haben. :-)

Alles klar?

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Bestapproximation: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 02:14 Mi 19.07.2006
Autor: DAB268

Hat sich erledigt!

-------------------------------

Hi.

Habs leider dadurch nicht wirklich verstanden, jedoch meine ich, dass du bei Tschebyscheff auf jeden Fall alle Polynome von [mm] T_0 [/mm] bis [mm] T_5 [/mm] nehmen müsstest.

Wäre schön, wenn jemand anderes mal versuchen könnte den Kram zu erklären.

MfG
DAB268

Bezug
                        
Bezug
Bestapproximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:47 Mi 19.07.2006
Autor: Bastiane

Hallo!

Wenn du genau sagst, wo dein Problem liegt, versuche ich es gerne noch einmal.

Viele Grüße
Bastiane
[cap]


Bezug
                                
Bezug
Bestapproximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:55 Mi 19.07.2006
Autor: DAB268

Hat sich erledigt. Bei zweiten Hinschauen habe ich es doch dank dir verstanden. War gestern schon spät.... :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]