matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeBesetzheitsstruktur / Cholesky
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Numerik linearer Gleichungssysteme" - Besetzheitsstruktur / Cholesky
Besetzheitsstruktur / Cholesky < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Besetzheitsstruktur / Cholesky: Frage
Status: (Frage) beantwortet Status 
Datum: 14:31 Sa 21.05.2005
Autor: mac_dadda

Bei dieser Aufgabe komme ich nicht richtig zum Anfang, weil meiner Meinung nach die Anfangsbedingungen unklar sind. Meiner Meinung nach müsste k irgendwie plausibler definiert sein. Wenn ich k sehr klein wähle, dann gilt die Ungleichung immer und wenn k sehr gross gewählt wird, dann gilt die Ungleichung nie. Oder übersehe ich da etwas?

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Besetzheitsstruktur / Cholesky: Antwort
Status: (Antwort) fertig Status 
Datum: 00:31 So 22.05.2005
Autor: mathemaduenn

Hallo mac_dadda,
Nehmen wir mal eine 4x4 Matrix zum erklären der Ungleichung.

[mm] \pmat{ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} } [/mm]

Nun kommt erstmal die Symmetriebedingung ins Spiel die Gegenüberliegenden Elemente sind gleich.

[mm] \pmat{ a_{11} & a_{21} & a_{31} & a_{41} \\ a_{21} & a_{22} & a_{32} & a_{42} \\ a_{31} & a_{32} & a_{33} & a_{43} \\ a_{41} & a_{42} & a_{43} & a_{44} } [/mm]

Nun nehm ich mal k=2
4-1>2 klar! Sonst nichts also bekommt man

[mm] \pmat{ a_{11} & a_{21} & a_{31} & 0 \\ a_{21} & a_{22} & a_{32} & a_{42} \\ a_{31} & a_{32} & a_{33} & a_{43} \\ 0 & a_{42} & a_{43} & a_{44} } [/mm]

Für k=3 oder größer hat die Bedingung also keinen Einfluß auf die Matrix.

Nun nehm ich mal k=1
4-1>1
4-2>1
3-1>1  

Also sieht die Matrix so aus

[mm] \pmat{ a_{11} & a_{21} & 0 & 0 \\ a_{21} & a_{22} & a_{32} & 0 \\ 0 & a_{32} & a_{33} & a_{43} \\ 0 & 0 & a_{43} & a_{44} } [/mm]

k=0

[mm] \pmat{ a_{11} & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} } [/mm]

k=-1

[mm] \pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 } [/mm]

Die Nullmatrix ist nicht positiv definit (da ja auch nicht invertierbar) also fallen k kleiner Null weg.
Alles klar?
gruß
mathemaduenn


Bezug
        
Bezug
Besetzheitsstruktur / Cholesky: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 So 22.05.2005
Autor: DaMenge

Hallo,

um das nochmal anders zu formulieren : k gibt die Anzahl der Nebendiagonalen an (in jede Richtung [oben/unten]).

Um zu zeigen, dass es bei der Cholesky-Zerlegung ähnlich ist, musst du dir nochmal anschauen, wie diese entsteht, nämlich ähnlich wie die LR-Zerlegung - hier musste man die $ [mm] l_{i,j} [/mm] $ ja so wählen, dass die Nebendiagonalelemente gerade 0 werden (Gauß-Algo) - wie viele dieser $ [mm] l_{i,j} [/mm] $ braucht man pro Spalte also, wenn man weiß, dass es nur k (untere) Nebendiagonalen gibt?
[man braucht nur untere Nebendiagonalen zu betrachten wg. der Symmetrie... siehe Herleitung der Cholesky-Zerlegung]

falls du also weitere Fragen hast, schreibe mal auf, wie weit du gekommen bist...

viele Grüße
DaMenge
P.S: dies sollte nur eine ergänzende Hilfe sein ;-)

Bezug
                
Bezug
Besetzheitsstruktur / Cholesky: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:02 Sa 25.06.2005
Autor: mac_dadda

also, es ist ja schon eine Weile her, seit ich mich mit dieser Aufgabe beschäftigt habe, aber ich habe es in der Zwischenzeit immer noch nicht so ganz verstanden. Den Beweis meine ich. Den kann ich überhaupt nicht führen. Nicht mal ansatzweise. Deshalb möchte ich erstmal wissen, ob ich denn das Ergebnis zu deuten verstanden habe. Ich schreibe es mal in Worten auf.

Soll dieser Beweis leifern, dass alle Nullen in der Matrix, die nicht in der Hauptdiagonale oder der ersten Nebendiagonalen stehen, auch in der L respecktive R Matrix stehen werden?

Falls mich jemand auf anderem Wege zum Ziel führen will/kann, dann lasse ich mich natürlich gerne darauf ein...

Bezug
                        
Bezug
Besetzheitsstruktur / Cholesky: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 So 26.06.2005
Autor: DaMenge

Hallo,


> Soll dieser Beweis liefern, dass alle Nullen in der Matrix,
> die nicht in der Hauptdiagonale oder der ersten k
> Nebendiagonalen stehen, auch in der L respecktive R Matrix
> stehen werden?

ja, genau das !
Also um dir mal die Teilaufgabe b) zu lösen: der Satz in a) sagt, dass folgende Nullen, die von mir rot markiert sind auch in L und [mm] L^T [/mm] automatisch 0 sein werden und deshalb gar nicht erst berechnet werden müssen:
[Dateianhang nicht öffentlich]

zum Beweis solltest du dir wirklich mal anschauen, wie bei der LR-Zerlegung bzw. Cholesky die Matrix L gewonnen wird !

ich lasse das aber mal auf Teilweise Beantwortet, falls jemand einen anderen Beweis ersinnen möchte...

viele Grüße
DaMenge

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Besetzheitsstruktur / Cholesky: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:59 Di 28.06.2005
Autor: matux

Hallo mac_dadda!

Wir bedauern, dass Deine Frage nicht in der von dir eingestellten Fälligkeitszeit beantwortet wurde.

Der wahrscheinlichste Grund dafür ist, dass ganz einfach niemand, der dir hätte helfen können, im Fälligkeitszeitraum online war. Bitte bedenke, dass jede Hilfe hier freiwillig und ehrenamtlich gegeben wird.

Wie angekündigt gehen wir nun davon aus, dass du an einer Antwort nicht mehr interessiert bist. Die Frage taucht deswegen nicht mehr in der Liste der offenen Fragen, sondern nur noch in der Liste der Fragen für Interessierte auf.
Falls du weiterhin an einer Antwort interessiert bist, stelle einfach eine weitere Frage in dieser Diskussion.

Wir wünschen dir beim nächsten Mal mehr Erfolg! [kleeblatt]

Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]