Beschränktheit zeigen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 13:24 Di 08.11.2011 | Autor: | Tsetsefliege |
Aufgabe | Heute hat unser Professor eine kleine Bemerkung an der Tafel gemacht. Es geht um folgendes Beispiel:
[mm] g(x)=\bruch{1}{\wurzel{x}}, 0\le{x}\le{1} [/mm] Im Pkt eins verhält sie sich wie eine Dirichlet Funktion (also bei seiner Zeichnung ging an der Stelle eins einfach ein Strich zur x-Achse).
Man soll sich die Summe [mm] \summe_{}^{}\bruch{1}{2^n}g(x-q_n)\ge{0} [/mm] ansehen und irgendwie darauf schließen das g(x) in jedem Intervall beschränkt ist, sofern ich das richtig verstanden habe. |
Kann jemand von euch damit evt. irgendetwas anfangen bzw. so ein ähnliches Beispiel schon einmal gesehen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:36 Di 08.11.2011 | Autor: | leduart |
Hallo
bist du dir sicher, dass bei dem Intervall [mm] 0\le [/mm] x und nicht 0<x stand? für x=0 ist die fkt gar nicht definiert, allerdings in jedem Intervall [mm] \epsilon
Der Strich bei x=1 sollte sicher nur das ende des betrachteten Gebietes sein und nix mit Dirichlet Funktion.
zum Rest kann ich nichts sagen, weisst du was [mm] q_n [/mm] sein soll? also gegen was soll es konvergieren?
Gruss leduart
|
|
|
|
|
Ja 0<x, ich denke er hat zu Beginn gemeint das der Flächeninhalt der Funktion g(x) 0<=x<=1 endlich ist, deshalb das kleiner-gleich. Zu der Folge [mm] q_n [/mm] kann ich nichts sagen (evt. eine Nullfolge?) nur das die Summe [mm] \ge{0} [/mm] sein muss.
|
|
|
|
|
Gemeint sein dürfte eine Abzählung von [mm] \IQ\cap(0,1).
[/mm]
Dann hat man ein Beispiel für eine Lebesgue-integrierbare Funktion, die sehr weit davon entfernt ist, Riemann-intergrierbar zu sein
(wobei man dann aber [mm] g(|x-q_n|) [/mm] betrachten sollte).
Die Unbeschränktheit folgt, da in jedem Teilintervall ein [mm] q_n [/mm] liegt und der entsprechende Summand dann unbeschränkt ist.
Die Lebesgue-Intergrierbarkeit folgt daraus, dass jeden Summand integrierbar ist mit Intergral [mm] \le 4*2^{-n}.
[/mm]
|
|
|
|
|
Ich habe ihn noch einmal nach dem Beispiel gefragt. [mm] \IQ=\{q_n,...\} [/mm] und man soll zeigen das die Funktion [mm] f(x)=\summe_{}^{}\bruch{1}{2^n}g(x-q_n)\ge{0} [/mm] in jedem Intervall unbeschränkt und nirgends Riemanm-integrierbar ist.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:26 Mi 09.11.2011 | Autor: | fred97 |
> Ich habe ihn noch einmal nach dem Beispiel gefragt.
> [mm]\IQ=\{q_n,...\}[/mm] und man soll zeigen das die Funktion
> [mm]f(x)=\summe_{}^{}\bruch{1}{2^n}g(x-q_n)\ge{0}[/mm] in jedem
> Intervall unbeschränkt und nirgends Riemanm-integrierbar
> ist.
Was soll das denn ? Es war doch g(x)= [mm] \bruch{1}{\wurzel{x}}
[/mm]
Was , bitteschön, ist dann [mm] g(\bruch{1}{2}-200000000) [/mm] ?
FRED
|
|
|
|