matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeschränktheit einer Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Beschränktheit einer Folge
Beschränktheit einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit einer Folge: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:37 Sa 15.11.2008
Autor: christoph1403

Aufgabe
Die Folge [mm] a_{n} [/mm] ; n=1,2,... ist gegeben durch [mm] a_{n}=\bruch{n-1}{n}. [/mm] Wie kann ich zeigen, dass die Folge beschränkt ist?

Hallo,
wie kann ich zeigen, dass die Folge beschränkt ist?
Die obere Grenze müsste ja 1 sein, weil [mm] a_{n} [/mm] = [mm] \bruch{n}{n} [/mm] + [mm] \bruch{1}{n} [/mm] . Der erste Teil ist eins und der zweite geht ja gegen 0, aber wie kann ich das zeigen?

        
Bezug
Beschränktheit einer Folge: umformen
Status: (Antwort) fertig Status 
Datum: 17:45 Sa 15.11.2008
Autor: Loddar

Hallo Christoph!



Deine Vermutung bezüglich der Grenzen sind richtig. Diese kannst du nun durch schlichtes Lösen der folgenden Ungleichungen nachweisen:
[mm] $$\bruch{n-1}{n} [/mm] \ < \ 1$$
[mm] $$\bruch{n-1}{n} [/mm] \ > \ 0$$

Gruß
Loddar


Bezug
                
Bezug
Beschränktheit einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Sa 15.11.2008
Autor: christoph1403

alles klar! Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]