matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenBeschl. mit Luftwiderst. - DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Beschl. mit Luftwiderst. - DGL
Beschl. mit Luftwiderst. - DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschl. mit Luftwiderst. - DGL: DGL Luftwiderstand Auto
Status: (Frage) beantwortet Status 
Datum: 20:52 Do 04.11.2004
Autor: foxxylein

Die Aufgabe lautet: Ein Auto [mm] (m_{A} [/mm] = 1000 kg) beschleunigt aus dem Stand mit [mm] a_{B} [/mm] = 2,5 [mm] \bruch{m}{s^{2}}. [/mm] Der Luftwiderstand betrage [mm] F_{R} [/mm] = D * [mm] v^{2} [/mm]

Die Lösung fällt mit nicht schwer. Bloß zum Schluß bekomme ich eine DGL, die ich nicht lösen kann.

F = m * a

[mm] F_{B} [/mm] = [mm] m_{A} [/mm] * [mm] a_{B} [/mm]   Beschleunigung des Autos
[mm] F_{R} [/mm] = D * [mm] v^{2} [/mm]           Luftwiderstand (genau entgegengesetzt)

deshalb Resultierende:

[mm] F_{G} [/mm] = [mm] F_{B} [/mm] - [mm] F_{R} [/mm] = [mm] m_{A} [/mm] * [mm] a_{B} [/mm] - D * [mm] v^{2} [/mm]

es gilt auch

[mm] F_{G} [/mm] = [mm] m_{A} [/mm] * a

daraus folgt für a (effektive Beschleunigung abhängig von Zeit t)

a(t) = [mm] a_{B} [/mm] - [mm] \bruch{ D * v(t)^{2}}{m_{A}} [/mm]

v(t) nach Zeit abgeleitet ist a(t) , v'(t) = a(t) (also v punkt)

v'(t) = [mm] a_{B} [/mm] - [mm] \bruch{ D * v(t)^{2}}{m_{A}} [/mm]

Wie löse ich diese Gleichung nun nach v(t) auf?
Vielen Dank für Antworten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beschl. mit Luftwiderst. - DGL: Antwort
Status: (Antwort) fehlerhaft Status 
Datum: 18:27 Fr 05.11.2004
Autor: Hamiltoneon

Hi,
Du kannst die Dgl. nicht einfach nach v(t) auflösen, du musst wie folgt vorgehen.
Die DGl.
                [mm] v'(t)=a-w*v^2 [/mm]   wobei w=D/m
1) zuerst sucht man eine Lsg. der homogenen DGl., dass heisst

    [mm] v'(t)+w*v^2=0 [/mm]
  
     [mm] dv/dt+w*v^2=0 [/mm]       "durch Trennung der Variablen"

         [mm] dv/v^2=-w [/mm] dt               "Integration"

           -1/v=-w*t-C                  "nach v auflösen"

        v.= 1/(w+C)                     "dies ist die Lsg der hom. DGl."

2) Dann eine Lsg der inhom. DGl.

  Mit dem Ansatz v,=c=a und v,'=0  ensetzen in die DGl.

[mm] w*c^2=a [/mm]              nach c auflösen

c= [mm] \wurzel[2]{m*a/D} [/mm]

3.) Die allg. Lsg. der inhom. DGl. lautet dann

   v(t)=v.+v,=1/(w+C) + [mm] \wurzel[2]{m*a/D} [/mm]

  C bekommst du dann durch sog. Anfangsbedingung wie z.B. v(0)=0

      

Bezug
                
Bezug
Beschl. mit Luftwiderst. - DGL: nichtlineare DGL!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Fr 05.11.2004
Autor: mathemaduenn

Hallo Hamiltoneon,
[willkommenmr]
Der Ansatz homogene + inhomogene Lösung ist nur für lineare Differentialgleichungen richtig, wenn die Summe 2er Lösungen der homogenen Gleichung auch wieder eine Lösung ist. Hierbei handelt es sich aber um eine nichtlineare DGL. Die Nichtlinearität heißt dabei das die DGL in v nichtlinear ist. Hier [mm] v^2. [/mm]
Alles klar?
gruß
mathemaduenn

Bezug
                
Bezug
Beschl. mit Luftwiderst. - DGL: Stellungnahme
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:18 Sa 06.11.2004
Autor: Hamiltoneon

Ja natürlich ihr habt recht mit nichtlin. DGl. Sorry, aller Anfang ist schwer.

Der Ansatz würde nur funktionieren für ein nicht quadratisches v.

Die Lsg. kam mir auch einwenig spanisch vor.

Viele Grüsse und Dank an das matheraum-team, ciao




Bezug
                        
Bezug
Beschl. mit Luftwiderst. - DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 Sa 06.11.2004
Autor: mathemaduenn

Hallo Hamiltoneon,
Ja. Aller Anfang ist schwer. Ich hoffe Du lässt Dich dadurch nicht vom beantworten von Fragen im Matheraum abbringen. [chatten]
gruß
mathemaduenn

Bezug
        
Bezug
Beschl. mit Luftwiderst. - DGL: Ricatti DGL
Status: (Antwort) fertig Status 
Datum: 20:18 Fr 05.11.2004
Autor: mathemaduenn

Hallo foxxylein,
[willkommenmr]
Diese Differentialgleichung ist nichtlinear. In diesem Fall muß man ausprobieren (TdV,exakte DGL ...) oder man hat einen speziellen Typ einer DGL wie hier die Ricatti DGL.
Allgemein sieht diese DGL so aus:
[mm] y^{'}+g(x)y+h(x)y^2=k(x) [/mm]
Sie kann man mit der Transformation
[mm] u(x)=e^{ \integral {h(x)y(x) dx}} [/mm]
in eine lineare DGL 2. Ordnung transformieren.
[mm]u'' + u'\left(g - \bruch{h'}{h}\right) - khu=0[/mm]
Für dein Beispiel ergibt das eine lineare DGL mit konstanten Koeffizienten.
Alles klar?
gruß
mathemaduenn

Bezug
        
Bezug
Beschl. mit Luftwiderst. - DGL: Transformation
Status: (Antwort) fertig Status 
Datum: 22:29 Fr 05.11.2004
Autor: mathemaduenn

Hallo foxxylein,
Mir ist noch eine Möglichkeit eingefallen diese DGL zu lösen und zwar mittels Transformation.
u(t)=v(t)+c
und c so das die Konstanten wegfallen.
Danach kann man mit Trennung der Veränderlichen weitermachen.
Kannst ja mal probieren.
gruß
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]