matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenBerührpunkt zweier Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Berührpunkt zweier Funktionen
Berührpunkt zweier Funktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührpunkt zweier Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Do 08.02.2007
Autor: TopHat

Aufgabe
wie muss a gewählt werden, damit [mm] f(x)=e^x [/mm] und [mm] g(x)=ax^3 [/mm] sich berühren. Bestimmen sie den Berührpunkt.

Also die Ableitungen habe ich gebildet:
[mm] f'(x)=e^x [/mm]        g'(x)= [mm] 3ax^2 [/mm]
Ich weiß, dass beim Berührpunkt diese beiden Ableitungen gleich sein müssen. Und ich weiß, dass der Berührpunkt irgendwo bei x>0 und y>0 sein muss.

Wenn ich die Funktionen nun gleichsetze:
f(x)=g(x)
[mm] e^x=ax^3 [/mm]
komme ich auf

[mm] a=\bruch{e^x}{x^3} [/mm]

Das bringt mir jetzt aber gar nichts, denn ich muss doch a konkret bestimmen? Wie kann ich das denn machen?



        
Bezug
Berührpunkt zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Do 08.02.2007
Autor: M.Rex

Hallo

Du sollst ja a und x so bestimmen, dass sich f(x) und g(x) berühren.

Also muss, wie du schon richtig erkannt hast, gelten f(x)=g(x)

Das heisst, [mm] e^{x}=ax³ [/mm]

Aber, da sie sich berühren sollen, müssen sie an der Stelle x die gleiche Steigung haben, also muss zusätzlich gelten:

f'(x)=g'(x)

Also

[mm] e^{x}=3ax² [/mm]

Jetzt hast du also folgende beiden Bedingungen

[mm] e^{x}=ax³ [/mm]
[mm] e^{x}=3ax² [/mm]

Hilft das erstmal weiter?

Marius

Bezug
                
Bezug
Berührpunkt zweier Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Do 08.02.2007
Autor: TopHat

also muss x=3 gelten, für a [mm] also\bruch{e^3}{27} [/mm] bzw

a = [mm] (\bruch{e}{3})^3 [/mm]

und für f(3)= [mm] e^3 [/mm]

denke ich mal.

Danke für die schnelle Antwort.



Bezug
                        
Bezug
Berührpunkt zweier Funktionen: stimmt
Status: (Antwort) fertig Status 
Datum: 11:59 Do 08.02.2007
Autor: Roadrunner

Hallo TopHat!


[ok] Das stimmt soweit.

Du solltest m.E. allerdings noch ein Wort darüber verlieren, dass die rechnerische Lösung $x \ = \ 0$ aus der Bestimmungsgleichung [mm] $a*x^3 [/mm] \ = \ [mm] 3a*x^2$ [/mm] kein Berührpunkt der beiden Funktionen ist.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Berührpunkt zweier Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Do 08.02.2007
Autor: TopHat

ja stimmt, aber um ehrlich zu sein, sieht man doch, dass die eine Funktion bei x=0  den Funktionswert 0 und die andere Funktion den Wert 1 hat. Aber danke für den Tipp.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]