matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBernoullische Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Bernoullische Ungleichung
Bernoullische Ungleichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoullische Ungleichung: Abschätzung nach oben
Status: (Frage) beantwortet Status 
Datum: 01:37 Mo 19.01.2009
Autor: noel_b

Wie kommt man von der Bernoullischen Ungleichung
[mm] (1+x)^{n} \ge [/mm] 1+nx für x [mm] \ge [/mm] -1 und n [mm] \in \IN [/mm] zu der nachfolgenden Form:
[mm] (1+x)^{n} \le \bruch{1}{1-nx} [/mm] für -1 [mm] \le [/mm] x < [mm] \bruch{1}{n} [/mm]

Gruß [mm] noel_b [/mm]




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bernoullische Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:48 Mo 19.01.2009
Autor: Marcel

Hallo,

> Wie kommt man von der Bernoullischen Ungleichung
>  [mm](1+x)^{n} \ge[/mm] 1+nx für x [mm]\ge[/mm] -1 und n [mm]\in \IN[/mm] zu der
> nachfolgenden Form:
>  [mm](1+x)^{n} \le \bruch{1}{1-nx}[/mm] für -1 [mm]\le[/mm] x < [mm]\bruch{1}{n}[/mm]
>  
> Gruß [mm]noel_b[/mm]

durch ersetzen von $x$ durch $-x$ (was dann nach Voraussetzung $> -1$ ist, da aus $x < 1/n [mm] \le [/mm] 1$ ($n [mm] \in \IN$) [/mm] insbesondere $x < 1$ und damit $-x > -1$ folgt) liefert die Bernoullische Ungleichung

[mm] $$(1-x)^n \ge 1-nx\,.$$ [/mm]

Weil hier nach Voraussetzung $1-nx > 0$ ist, ist das gleichwertig zu

[mm] $$\blue{(\star_1)}\;\;\;\frac{1}{1-nx} \ge \frac{1}{(1-x)^n}=(1-x)^{-n}\,.$$ [/mm]

Nun wollen wir noch

[mm] $$\red{(\star_2)}\;\;\;(1-x)^{-n} \ge (1+x)^n$$ [/mm] begründen:
Aus $-1 [mm] \le [/mm] x < 1/n [mm] \le [/mm] 1$ ($n [mm] \in \IN$) [/mm] folgt insbesondere $0 [mm] \le 1-x^2=(1-x)*(1+x) \le 1\,,$ [/mm] und damit für jedes $n [mm] \in\IN$ [/mm] auch

[mm] $$(1-x^2)^n \le 1\,,$$ [/mm]

was [mm] $(1-x)^n(1+x)^n \le [/mm] 1$ zur Folge hat. Das letztstehende kann man, da wegen $x < 1/n [mm] \le [/mm] 1$ ($n [mm] \in \IN$)auch [/mm] $1-x > 0$ sein muss, durch [mm] $(1-x)^n\;\;(>0)$ [/mm] dividieren, so dass

[mm] $(1+x)^n \le \frac{1}{(1-x)^n}=(1-x)^{-n}$ [/mm] folgt.

Also: [mm] $\blue{(\star_1)}$ [/mm] liefert zusammen mit [mm] $\red{(\star_2)}$ [/mm]

[mm] $$\frac{1}{1-nx} \ge \frac{1}{(1-x)^n}=(1-x)^{-n} \underset{\red{(\star_2)}}{\ge}(1+x)^n\,.$$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]