matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungBerechnung von Klothoiden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Berechnung von Klothoiden
Berechnung von Klothoiden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von Klothoiden: x und y Werte
Status: (Frage) beantwortet Status 
Datum: 13:03 So 11.05.2008
Autor: apfelmus

Aufgabe
An eine Gerade soll ein Kreisbogen mit dem Radius R = 200m mit Hilfe einer Klothoide mit dem Parameter A = 100 angeschlossen werden.
Nach der Formel L * R = A 2  ergibt sich für die Länge der Klothoide:
Um die Klothoide im Gelände bauen zu können, müssen, in der Regel alle 10 Meter, Punkte in die Örtlichkeit übertragen werden, an denen sich der Straßenbauer beim Bau orientiert.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich habe ein kleines Problem mit dieser Aufgabe.
Mir ist nicht ganz klar, wie ich die x- und y- Werte der Klothoide erhalte.
Es gibt ja zwei Fresnel’sche Integralfunktionen, mit denen man die Koordinaten berechnen kann ( zumindest laut []http://www.hinterseher.de/Diplomarbeit/Geometrie-Elemente.html)

x = [mm] \integral_{0}^{L} cos(L^2/2A^2) [/mm] * dL und

y = [mm] \integral_{0}^{L} sin(L^2/2A^2) [/mm] * dL

Leider haben wir noch keine Integralfunktionen gemacht und ich blick absolut nicht wie das funktionieren soll.
Kann mir irgendjemand helfen?
Wäre echt super nett.
Danke schon einmal im Voraus



        
Bezug
Berechnung von Klothoiden: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 So 11.05.2008
Autor: Tyskie84

Hi,

Ich kenne mich mit dem Thema auch nicht so wirklich aus. Ich hab mal im Internet etwas recherchiert und folgendes gefunden. Das sollte dir helfen.

[guckstduhier] [a]Datei-Anhang

Die Lösungen der Integrale findest du auch in diesem Dokument.

Ich hoffe ich konnte dir etwas helfen. Wenn nicht dann kannst du dich nocheinmal melden.

Noch als kleine Ergänzung folgende []Seite

[hut] Gruß



Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Bezug
        
Bezug
Berechnung von Klothoiden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 So 11.05.2008
Autor: apfelmus

Hm erstmal Danke für die schnelle Antwort, aber ehrlich gesagt hab ich das jetzt auch nicht so wirklich verstanden und eine Lösung für meine Aufgabe war mir auch nicht unbedingt ersichtlich.
Vielleicht könnte mir jemand das Problem enger auf meine Aufgabe bezogen erklären.

Gruß

Bezug
                
Bezug
Berechnung von Klothoiden: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:00 So 11.05.2008
Autor: apfelmus

Aufgabe
An eine Gerade soll ein Kreisbogen mit dem Radius R = 200m mit Hilfe einer Klothoide mit dem Parameter A = 100 angeschlossen werden.
Nach der Formel L * R = A 2  ergibt sich für die Länge der Klothoide:
Um die Klothoide im Gelände bauen zu können, müssen, in der Regel alle 10 Meter, Punkte in die Örtlichkeit übertragen werden, an denen sich der Straßenbauer beim Bau orientiert.

Kann mir irgendjemand bei dieser Aufgabe helfen und mir verständlich ;) erklären wie man die  Koordinaten berechnet?

Danke

Bezug
                        
Bezug
Berechnung von Klothoiden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 So 11.05.2008
Autor: leduart

Hallo
Es gibt nur numerische Methoden die Integrale zu berechnen.
Dazu kannst du fertige Programme zur numerischen Integration verwenden, oder selbst numerisch integrieren.
Verstehst du irgendwas von numerischer Integration?
Gehört diese Aufgabe zu ner Schulfacharbeit oder wo kommt sie her?
Gruss leduart.


Bezug
                                
Bezug
Berechnung von Klothoiden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 So 11.05.2008
Autor: apfelmus

Aufgabe
Integralrechnung

Hey,

Ich soll eine schriftliche Hausarbeit über Übergangsbögen schreiben.
Dazu gehören nun (leider) auch die Klothoide.
Und deshalb muss ich ne Beispielrechnung durchführen.
Das Problem ist das ich überhaupt nichts von der numerischen Intergralrechnung verstehe, weil wir das noch nie gemacht haben.
Es wär echt klasse wenn du mir da helfen könntest.

Gruß

Bezug
                                        
Bezug
Berechnung von Klothoiden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 So 11.05.2008
Autor: leduart

Hallo apfelmus
1. Frag deinen LehrerIn ob du wirklich numerisch integrieren sollst.
2. Wenn du das sollst kannst du als einfachstes Verfahren einfach eine Treppenfunktion verwenden, die habt ihr sicher bei der Einführung des Integrals besprochen. Das kann man für endliche Schrittweiten einfach mit Excel machen, oder in ner einfachen Programmiersprache. Es gibt auch Programme im Netz , die dir Integrale in festen Grenzen ausrechnen.
Genauere Methoden heissen Simpson oder Keplersche Fassregel, die findest du auch überall im Netz. sind aber vielleicht nicht so schnell zu kapieren und ne extra Hausarbeit. Kannst du denn Excel oder ne Programmiersprache?
Die Funktion, die bei dem Integral rauskommt heisst auch FresnelC Funktion oder Fresnelfkt. du kannst im Netz danach suchen,
der Rechner, den du hier für ein paar tage ausprobieren kannst rechnet dir das aus:
[]klick
Gruss leduart

Bezug
        
Bezug
Berechnung von Klothoiden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:34 So 11.05.2008
Autor: apfelmus

Das Problem ist, dass wir noch überhaupt nichts mit Integralen gemacht haben.
Aber ich denke, dass ich das mit der Keplerschen Fassregel irgendwie schon hinbekomme.
Ich versteh nur noch nicht so ganz wie ich aufgrund der Ausgangsformel

[mm] \integral_{0}^{L}cos(L^2/2A^2) [/mm] die Berechnung durchführen kann.

Gruß

Bezug
                
Bezug
Berechnung von Klothoiden: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Mo 12.05.2008
Autor: leduart

Hallo apfelmus
Hast du nen Funktionenplotter? dann zeichne dir die Funktion [mm] cos(t^2/2A^2) [/mm] mal auf, von 0an, bis zu der Länge, die du willst.
Was du suchst ist die Fläche darunter, erstmal bis t=10, dann 20 usw. diese Fläche gibt dir dann die x- Koordinate deines Punktes nach 10m Straße.
Du kannst auch sehen, dass du den Flächeninhalt einfach ungefähr bestimmen kannst, indem du die Fläche in lauter Streifen der Breite 1 oder 0,1 einteilst und all die beihnahe Rechtecke summierst. Das ist die einfachste Methode, und für den Strassenbau genau genug.
Wie genau kannst du ungefähr sagen in dem du einmal die Rechtecke unterhalb der Kurve summierstm ein mal die oberhalb. Der Unterschied gibt dir eim Maß für den Fehler.ich füg ne Skizze bei, beim letzten Streifen sind die beiden Rechtecke eingetragen.
Als Formel für x und y würd ich die Aus Wikipedia nehmen, deine hab ich nicht überprüft.
[mm]\integral_{0}^{L}cos(L^2/2A^2)[/mm]
ist eine schlechte Schreibweise, Wie weit man integriert (L) und was man integriert gehn hier durcheinander: besser ist:
[mm]\integral_{0}^{L}cos(t^2/2A^2*dt)[/mm]

[Dateianhang nicht öffentlich]

Gruss leduart


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
        
Bezug
Berechnung von Klothoiden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Mo 12.05.2008
Autor: apfelmus

Hallo Leduart,

vielen vielen Dank für die ausführliche Antwort.
Das sieht nicht gerade nach wenig Arbeit aus.
In der Zwischenzeit war ich aber auch nicht untätig ^^ und hab eine Rechnung mit der Simpsonformel durchgeführt.
Ist die korrekt oder vollkommen falsch?

[Dateianhang nicht öffentlich]
  



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Berechnung von Klothoiden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Mo 12.05.2008
Autor: leduart

Hallo
Im Prinzip ist das richtig, nur muss man eigentlich das Intervall a bis b kürzer als die ganze Strecke nehmen, je kleiner die Stücke, desto genauer. da der [mm] cosx^2 [/mm] auf dem ersten Stück fast konstant ist, macht es da nicht soviel aus. aber für die weiteren Stücke schon. also ich würd die Schritte höchstens 1/10 so gross machen. Was du als Formel hast ist eben nur für kleine Stücke gut.
Wenn du deine Formel in Excel eingeben kannst sind 10 Schritte auch nicht mehr Arbeit als einer!
Gruss leduart


Bezug
                        
Bezug
Berechnung von Klothoiden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:42 Mo 12.05.2008
Autor: apfelmus

Ja das war auch nur die Berechnung eines Auschnittes.
Die Gesamtstrecke war 50.
Ich bedanke mich ganz herzlich und werd das Forum weiterempfehlen.
So schnelle und hilfreiche Antworten hab ich selten bekommen.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]