matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBerechnung höherer Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Berechnung höherer Ableitung
Berechnung höherer Ableitung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung höherer Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 So 12.06.2005
Autor: Lessa

Hallo, haben folgende Aufgabe:
Sei f=f(x,y): [mm] \IR^{2} \to \IR [/mm]  eine Funktion so dass
[mm] \bruch{ \partial f}{ \partial y} (x_{0},y_{0}) \not=0 [/mm]
nach dem Satz über implizite Funktionen gibt es eine Funktion g(x), die in einer Umgebung U von [mm] x_{0} [/mm] definiert ist, so dass [mm] g(x_{0})=y_{0} [/mm] und f(x,g(x))=0 für alle x aus U.
in der Vorlesung haben wir gezeigt, dass mit f(x,g(x))=0 über ganz U (also konstant)
f'(x,g(x))= [mm] f_{x} (x,g(x))+f_{y}(x,g(x))*g'(x)=0 [/mm] also
g'(x)=- [mm] \bruch{ f_{x}}{ f_{y}}(x,g(x)) [/mm]
wobei  [mm] f_{x}(x,g(x))= \bruch{ \partial f}{ \partial x} [/mm] (x,g(x))
nun sollen wir so auch eine Formel für die zweite Ableitung finden (mit [mm] f_{xx}, f_{xy} [/mm] und [mm] f_{yy} [/mm] .
Bin mir aber nicht sicher, wie man das weiter ableiten kann.
Betrachtet man da die Ableitung der Ableitung oder die Ableitungen der beiden partiellen?
Wäre super, wenn da jemand einen Tipp hätte. Müssen nämlich mit dem Ergebnis weiter rechnen.


        
Bezug
Berechnung höherer Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Di 14.06.2005
Autor: Stefan

Hallo Lessa!

Man kann das doch einfach mit der Kettenregel (und zwischendrinnen Produktregel) weiter ableiten:

>  f'(x,g(x))= [mm]f_{x} (x,g(x))+f_{y}(x,g(x))*g'(x)=0[/mm] also

Daraus folgt:

$0 = [mm] f_{xx}(x,g(x)) [/mm] + [mm] f_{xy}(x,g(x)) [/mm] g'(x) + [mm] f_{yx}(x,g(x))*g'(x) [/mm] + [mm] f_{yy}(x,g(x)) \cdot (g'(x))^2 [/mm] + [mm] f_y(x,g(x))g''(x)$. [/mm]

Und das kann man dann nach $g''(x)$ auflösen...

Viele Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]