matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenBerechnung der komplexen Zahl
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Berechnung der komplexen Zahl
Berechnung der komplexen Zahl < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung der komplexen Zahl: Erklärung
Status: (Frage) beantwortet Status 
Datum: 03:14 Sa 23.11.2013
Autor: Benko

Aufgabe
Berechnen Sie die komplexe Zahl...


Hallo ich komme bei einer Aufg. einfach nich auf ein zufriedenstellendes Ergebnis..
Aufgabe:

[mm] z=\wurzel{-i*(-2)^2} [/mm]

<=> [mm] z^2=-i [/mm]
[mm] \varphi=-1/0 [/mm] ===> Lücke
ander der Stelle hab ich das Ergebnis für den Winkel ignoriert und mit 0 angenommen. [mm] 2*\pi [/mm] dazu addiert, wg. -i (4. Q.)

danach hab ich z0 und z1 mithilfe Moivre berechnet..

=> z0= [mm] e^{i*\pi} [/mm]
=> z1= [mm] e^{-i*2*\pi} [/mm]

Wo ist mein Fehler und der Trick?
Vielen Dank schon mal im Vorraus

        
Bezug
Berechnung der komplexen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 06:17 Sa 23.11.2013
Autor: angela.h.b.


> Berechnen Sie die komplexe Zahl...

>

> Hallo ich komme bei einer Aufg. einfach nich auf ein
> zufriedenstellendes Ergebnis..
> Aufgabe:

Hallo,

Du möchtest also

> [mm]z=\wurzel{-i*(-2)^2}[/mm]

[mm] =2\wurzel{-i} [/mm] bestimmen.


Deshalb interessierst Du Dich für die Gleichung
>

> [mm]z^2=-i[/mm].

(Du darfst nicht schreiben:
[mm] z=\wurzel{-i*(-2)^2}\quad [/mm] <==> [mm] z^2=-i, [/mm]
denn das stimmt nicht.)


> [mm]\varphi=-1/0[/mm] ===> Lücke

Wie kommst Du denn darauf?

Es ist doch [mm] -i=e^{i*\bruch{3}{2}\pi}. [/mm]

Jetzt kommst Du sicher weiter.



> ander der Stelle hab ich das Ergebnis für den Winkel
> ignoriert und mit 0 angenommen.

Hm. Ergebnisse zu ignorieren und sich stattdessen etwas auszudenken, scheint mir keine verheißungsvolle Strategie zu sein.

LG Angela

Bezug
                
Bezug
Berechnung der komplexen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Sa 23.11.2013
Autor: Benko

Ok danke Angela, jo ignorieren bringt wohl nix lol.. LG
Bezug
                        
Bezug
Berechnung der komplexen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Sa 23.11.2013
Autor: DieAcht

Hallo,

Angela hat dir meiner Meinung nach schon alles gesagt, aber ich probiere es gerne nochmal.

[mm] z=\sqrt{-i(-2)^2}=\sqrt{-i\cdot4}=\sqrt{-i}\cdot\sqrt{4}=2\sqrt{-i}=2\cdot\sqrt{e^{i\bruch{3}{2}\pi}} [/mm]

Nun du!

Gruß
DieAcht

Bezug
                                
Bezug
Berechnung der komplexen Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Sa 23.11.2013
Autor: Benko

Ne sry. ich habe mich gestern vertippt....

Der Klammerausdruck war falsch, mein Fehler.

z= [mm] \wurzel{-i*(-1)^2} [/mm]

und nich, wie ich gestern meinte...Tippfehler

z= [mm] \wurzel{-i*(-2)^2} [/mm]

Bezug
                                
Bezug
Berechnung der komplexen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Sa 23.11.2013
Autor: Benko

Ne sry. ich habe mich gestern vertippt....

Der Klammerausdruck war falsch, mein Fehler.

z=  [mm] \wurzel{-i\cdot{}(-1)^2} [/mm]

und nich, wie ich gestern meinte...Tippfehler

z=  [mm] \wurzel{-i\cdot{}(-2)^2} [/mm]

Bezug
                                        
Bezug
Berechnung der komplexen Zahl: fast genauso
Status: (Antwort) fertig Status 
Datum: 17:49 Sa 23.11.2013
Autor: Loddar

Hallo Benko!


Dann ist es doch fast genauso, wie bereits oben beschrieben:

$ [mm] z=\sqrt{-i*(-1)^2}=\sqrt{-i\cdot1}=\sqrt{-i}=\sqrt{e^{i\bruch{3}{2}\pi}} [/mm] $


Gruß
Loddar

Bezug
                                                
Bezug
Berechnung der komplexen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Sa 23.11.2013
Autor: Benko

also wolfram alpha gibt mir folgende 2 ergebnisse..

z0= [mm] e^{i{\pi*3/4}} [/mm]


z1= [mm] e^{-i{\pi/4}} [/mm]

bitte um einen nachvollziehbaren Lösungsansatz!

Bezug
                                                        
Bezug
Berechnung der komplexen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Sa 23.11.2013
Autor: chrisno

Das solltest Du selbst herausbekommen, dass es keinen Widerspruch gibt. Als Tipp: Rechenregeln mit Potenzen, Spezialfall mit 1/2.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]