matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBerechnung Wahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Berechnung Wahrscheinlichkeit
Berechnung Wahrscheinlichkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 So 18.10.2009
Autor: steppenhahn

Aufgabe
(a) Wie viele Rosinen müssen in 500g Teig vorhanden sein, damit ein 50g Brötchen mit mindestens 99% Wahrscheinlichkeit eine Rosine enthält?
!Vollständige Formulierung und Begründung des wahrscheinlichkeitstheoretischen Modells!

Hallo!

Ich habe einige Fragen zu meinen Ideen der Aufgabe.

Zunächst bin ich mir nicht ganz sicher, was eigentlich ein wahrscheinlichkeitstheoretisches Modell ist. Ich vermute aber, dass damit gemeint ist, ich soll den Ergebnisraum [mm] \Omega, [/mm] den Ereignisraum [mm] \mathcal{P}(\Omega) [/mm] und die Wahrscheinlichkeitsverteilung [mm] \IP [/mm] angeben (sowie, wie [mm] \IP [/mm] überhaupt verteilt ist)?

Für diese Aufgabe wählte ich die Binomial-Verteilung als Modell. Dabei ging ich davon aus, dass die Phrase "mindestens 99% Wahrscheinlichkeit eine Rosine enthält" auch mehrere Rosinen zulässt (?).
Die Wahrscheinlichkeit, dass wenn genau eine Rosine in 500g Teig ist, sie auch in dem ganz speziellen 50g-Brötchen ist, beträgt [mm] \frac{1}{10}. [/mm]
Die Anzahl der Rosinen N im 500g-Teig ist unbekannt. Also ist:

[mm] $\Omega [/mm] = [mm] \{1,...,N\}$ [/mm]

[mm] $\IP(k) [/mm] = [mm] \vektor{N\\k}*\left(\frac{1}{10}\right)^{k}*\left(\frac{9}{10}\right)^{N-k}$ [/mm]

Ist das so richtig?

Dann würde ich vom Gegenereignis ausgehen "0 Rosinen kommen im speziellen 50g-Brötchen vor":

$0.99 = [mm] \sum_{k=1}^{n}\IP(k) [/mm] = 1 - [mm] \IP(0) [/mm] =  [mm] 1-\vektor{N\\0}*\left(\frac{1}{10}\right)^{0}*\left(\frac{9}{10}\right)^{N} [/mm] = 1 - [mm] \left(\frac{9}{10}\right)^{N}$. [/mm]

Also $0.01 = [mm] \left(\frac{9}{10}\right)^{N}\gdw [/mm] N = 43.7$, also müssen mindesten 44 Rosinen im 500g-Teig sein.

Ist das richtig, oder war meine Annahme dass p = 1/10 für eine Rosine im Brötchen nicht gerechtfertigt?

Grüße,
Stefan

        
Bezug
Berechnung Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 So 18.10.2009
Autor: koepper

Hallo Stefan,

> (a) Wie viele Rosinen müssen in 500g Teig vorhanden sein,
> damit ein 50g Brötchen mit mindestens 99%
> Wahrscheinlichkeit eine Rosine enthält?
>  !Vollständige Formulierung und Begründung des
> wahrscheinlichkeitstheoretischen Modells!
>  Hallo!
>  
> Ich habe einige Fragen zu meinen Ideen der Aufgabe.
>  
> Zunächst bin ich mir nicht ganz sicher, was eigentlich ein
> wahrscheinlichkeitstheoretisches Modell ist. Ich vermute
> aber, dass damit gemeint ist, ich soll den Ergebnisraum
> [mm]\Omega,[/mm] den Ereignisraum [mm]\mathcal{P}(\Omega)[/mm] und die
> Wahrscheinlichkeitsverteilung [mm]\IP[/mm] angeben (sowie, wie [mm]\IP[/mm]
> überhaupt verteilt ist)?
>  
> Für diese Aufgabe wählte ich die Binomial-Verteilung als
> Modell. Dabei ging ich davon aus, dass die Phrase
> "mindestens 99% Wahrscheinlichkeit eine Rosine enthält"
> auch mehrere Rosinen zulässt (?).

ja! ansonsten hätte es in der Aufgabe "genau eine Rosine" heissen müssen.

>  Die Wahrscheinlichkeit, dass wenn genau eine Rosine in
> 500g Teig ist, sie auch in dem ganz speziellen
> 50g-Brötchen ist, beträgt [mm]\frac{1}{10}.[/mm]

genau.

>  Die Anzahl der Rosinen N im 500g-Teig ist unbekannt. Also
> ist:
>  
> [mm]\Omega = \{1,...,N\}[/mm]

[mm] $\Omega$ [/mm] ist die Ergebnismenge des Experimentes, also die möglichen Anzahlen von Rosinen, die tatsächlich im ausgewählten Brötchen sind.
Also [mm] $\Omega [/mm] = [mm] \{0, 1, \ldots, N\}$ [/mm]

> [mm]\IP(k) = \vektor{N\\k}*\left(\frac{1}{10}\right)^{k}*\left(\frac{9}{10}\right)^{N-k}[/mm]
>  
> Ist das so richtig?

wenn das die Wsk. für genau k Rosinen im Brötchen sein soll, dann ja!
  

> Dann würde ich vom Gegenereignis ausgehen "0 Rosinen
> kommen im speziellen 50g-Brötchen vor":
>  
> [mm]0.99 = \sum_{k=1}^{n}\IP(k) = 1 - \IP(0) = 1-\vektor{N\\0}*\left(\frac{1}{10}\right)^{0}*\left(\frac{9}{10}\right)^{N} = 1 - \left(\frac{9}{10}\right)^{N}[/mm].
>  
> Also [mm]0.01 = \left(\frac{9}{10}\right)^{N}\gdw N = 43.7[/mm],
> also müssen mindesten 44 Rosinen im 500g-Teig sein.

korrekt.

LG
Will

Bezug
                
Bezug
Berechnung Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:01 So 18.10.2009
Autor: steppenhahn

Ok,

vielen Dank für deine Korrektur und deine Hinweise, Will :-)
Bei der Ergebnismenge hatte ich doch tatsächlich die 0 vergessen!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]