matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieBerechnung Fluss durch eine Fl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Berechnung Fluss durch eine Fl
Berechnung Fluss durch eine Fl < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung Fluss durch eine Fl: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:09 Mi 09.04.2008
Autor: user0009

Aufgabe
Berechnen Sie den Fluss phi des Vektorfeldes v(x,y,z) durch die Fläche S:

s: 2x+2y+z=6 y,x,z,>=0

[mm] v=\vektor{2xy+z\\ y^2 \\ -x-3y} [/mm]

Also zuerst einmal hab ich folgendes gemacht:

1) Parametrisierung: phi(x,y) = [mm] \vektor{x\\y\\-2x-2y+6} [/mm]

2) Integral aufstellen: [mm] \integral_{}^{B}\integral_{}^{}{(2xy+z)dy \wedge dz+y^2 dz \wedge dx+(-x-3y) dx \wedge dy} [/mm]

3) do = [mm] \bruch{\partial phi}{\partial x} [/mm] x [mm] \bruch{\partial phi}{\partial y} [/mm]
ergibt [mm] \vektor{1 \\ 0 \\ -2} [/mm] x [mm] \vektor{0 \\ 1 \\ -2} [/mm] dx dy
do ist somit [mm] \vektor{2\\2\\1} [/mm]

Ist dies soweit korrekt? Wenn nein wo hab ich Fehler gemacht?

Wie komme ich zu den Grenzen für das Integral?

4) Integral aufstellen:

[mm] \integral_{}^{B}\integral_{}^{}{V*do} [/mm] und dieses Integral den Angabevektor * do einsetzen.

Wie komme ich dann auf ein berechnebares Integral, denn die beiden Vektoren kann ich nicht integrieren?

Danke für die Hilfe user0009

        
Bezug
Berechnung Fluss durch eine Fl: Antwort
Status: (Antwort) fertig Status 
Datum: 02:43 Do 10.04.2008
Autor: MatthiasKr

Hi,
> Berechnen Sie den Fluss phi des Vektorfeldes v(x,y,z) durch
> die Fläche S:
>  
> s: 2x+2y+z=6 y,x,z,>=0
>  
> [mm]v=\vektor{2xy+z\\ y^2 \\ -x-3y}[/mm]
>  Also zuerst einmal hab ich
> folgendes gemacht:
>  
> 1) Parametrisierung: phi(x,y) = [mm]\vektor{x\\y\\-2x-2y+6}[/mm]

yep.

>  
> 2) Integral aufstellen:
> [mm]\integral_{}^{B}\integral_{}^{}{(2xy+z)dy \wedge dz+y^2 dz \wedge dx+(-x-3y) dx \wedge dy}[/mm]

diese notation ist mir nicht so gelaeufig, heisst aber nichts... ;-)

>  
> 3) do = [mm]\bruch{\partial phi}{\partial x}[/mm] x [mm]\bruch{\partial phi}{\partial y}[/mm]
>  
> ergibt [mm]\vektor{1 \\ 0 \\ -2}[/mm] x [mm]\vektor{0 \\ 1 \\ -2}[/mm] dx dy
>  do ist somit [mm]\vektor{2\\2\\1}[/mm]
>  
> Ist dies soweit korrekt? Wenn nein wo hab ich Fehler
> gemacht?

sieht OK aus. [daumenhoch]

  

> Wie komme ich zu den Grenzen für das Integral?
>  
> 4) Integral aufstellen:
>
> [mm]\integral_{}^{B}\integral_{}^{}{V*do}[/mm] und dieses Integral
> den Angabevektor * do einsetzen.
>  
> Wie komme ich dann auf ein berechnebares Integral, denn die
> beiden Vektoren kann ich nicht integrieren?

ganz einfach: bilde einfach das skalarprodukt der beiden vektoren, dann kannst du diese skalare funktion wie gewohnt integrieren.


gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]