Begleitmatrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:46 So 03.05.2009 | Autor: | Georgi |
Warum gibt es keine Begleitmatrix zu einem nicht normierten Polynom? Z.B. zu einem Polynom mit dem Höchstkoeffizienten [mm] (-1)^n [/mm] für ein ungerades n finde ich keine. Wie kann ich das beweisen?
Vielen Dank!
Georgi
P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:10 So 03.05.2009 | Autor: | felixf |
Hallo Georgi!
> Warum gibt es keine Begleitmatrix zu einem nicht normierten
> Polynom? Z.B. zu einem Polynom mit dem Höchstkoeffizienten
> [mm](-1)^n[/mm] für ein ungerades n finde ich keine. Wie kann ich
> das beweisen?
Das haengt ganz davon ab wie ihr das charakteristische Polynom einer Matrix definiert habt. Entweder man definiert es als [mm] $\chi_A(x) [/mm] := [mm] \det(A [/mm] - x [mm] E_n)$ [/mm] oder als [mm] $\chi_A(x) [/mm] := [mm] \det(x E_n [/mm] - A)$. Im zweiten Fall ist es immer normiert -- in dem Fall gibt es Begleitmatrizen nur zu normierten Polynomen --, und im ersten Fall ist der Leitterm [mm] $(-1)^n$: [/mm] sprich, es gibt nur zu solchen Polynomen eine Begleitmatrix. (Es gilt ganz allgemein [mm] $\det(A [/mm] - x [mm] E_n) [/mm] = [mm] (-1)^n \det(x E_n [/mm] - A)$.)
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:50 So 03.05.2009 | Autor: | Georgi |
Danke Felix.
Wir haben das Charakteristische Polynom mit det(A-XE) definiert. Nun habe ich mit der Begleitmatrix gerechnet und komme immer nur auf das normierte Polynom oder sein negatives (ich habe zw. gerade und ungerade n unterschieden), wie Du es auch geschrieben hast. Jedoch mich interessiert eine Matrix für ein Polynom, das nur den folgenden Höchstkoeffizienten hat: also [mm] (-1)^{n}*X+a_{n-1}*X^{n-1}+...+a_{0}, [/mm] nicht [mm] (-1)^{n}*(X+a_{n-1}*X^{n-1}+...+a_{0})
[/mm]
Wie kann ich beweisen, dass es keine Begleitmatrix für so ein Polynom für n ungerade gibt?
Mit freundlichen Grüßen
Georgi
|
|
|
|
|
> Danke Felix.
> Wir haben das Charakteristische Polynom mit det(A-XE)
> definiert. Nun habe ich mit der Begleitmatrix gerechnet und
> komme immer nur auf das normierte Polynom oder sein
> negatives (ich habe zw. gerade und ungerade n
> unterschieden), wie Du es auch geschrieben hast. Jedoch
> mich interessiert eine Matrix für ein Polynom, das nur den
> folgenden Höchstkoeffizienten hat: also
> [mm](-1)^{n}*X+a_{n-1}*X^{n-1}+...+a_{0},[/mm] nicht
> [mm](-1)^{n}*(X+a_{n-1}*X^{n-1}+...+a_{0})[/mm]
> Wie kann ich beweisen, dass es keine Begleitmatrix für so
> ein Polynom für n ungerade gibt?
Hallo,
ich bin mir nicht sicher, ob ich Dich richtig verstehe.
Du suchst für ungerades n die Begleitmatrix zu [mm] (-1)^{n}*X^n+a_{n-1}*X^{n-1}+...+a_{0}?
[/mm]
Es ist doch [mm] (-1)^{n}*X+a_{n-1}*X^{n-1}+...+a_{0}=(-1)^{n}*(X^n-a_{n-1}*X^{n-1}-...-a_{0}),
[/mm]
also tut die Matrix
[mm] \begin{pmatrix} 0 & 0 & \dots & 0 & a_0 \\ 1 & 0 & \dots & 0 & a_1 \\ 0 & 1 & \ddots & \vdots & a_2 \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & a_{n-1} \\ \end{pmatrix}
[/mm]
doch alles, was Du Dir wünschst.
Gruß v. Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:34 Mo 04.05.2009 | Autor: | Georgi |
Danke, Angela!
Nun verstehe ich es!
Also kann man immer zu einem Polynom der Art [mm] (-1)^{n}\cdot{}X+a_{n-1}\cdot{}X^{n-1}+...+a_{0} [/mm] eine Begleitmatrix finden!
Mit freundlichen Grüßen
Georgi
|
|
|
|