matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikBedingte Wahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Bedingte Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Mi 11.02.2009
Autor: Audience

Aufgabe
[Dateianhang nicht öffentlich]

Hallo,

oben ist eine ehemalige Klausuraufgabe, die ich gerade als Vorbereitung rechnen will, aber an der b) scheitere.
Für die
a) hab ich
[mm] \Omega [/mm] = {(R, E), (R, K), (F, E), (F, K)}
Mit dem Baum komme ich dann auf
Pr[(R, E)] = 0
Pr[(R, K)] = 1 - p
Pr[(F, E)] = pq
Pr[(F, K)] = p(1-q)
b) Pr[F | K] soll berechnet werden. Ich habe aber nicht Pr[K] ?

Danke für eure Antworten.
Gruß
Thomas

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Mi 11.02.2009
Autor: luis52

Moin Thomas

>  b) Pr[F | K] soll berechnet werden. Ich habe aber nicht
> Pr[K] ?
>  

Doch: [mm] $P(K)=P(K\cap R)+P(K\cap [/mm] F)$.

vg Luis

Bezug
                
Bezug
Bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 Mi 11.02.2009
Autor: Audience

Aha.. wie kommst du da drauf?


Bezug
                        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Mi 11.02.2009
Autor: luis52


> Aha.. wie kommst du da drauf?
>  


Sind A,B Ereignisse, so gilt die alte Bauernregel: [mm] $P(A)=P(A\cap B)+P(A\cap\overline{B})$. [/mm]    

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]