matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBasiswechsel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Basiswechsel
Basiswechsel < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:39 Di 05.03.2013
Autor: Masseltof

Aufgabe
Sei [mm] B=\{e_{1}; e_{2}; e_{3}\} [/mm] die kanonische Basis der [mm] \IR. [/mm]

Wie lautet die Basistransformationsmatrix T für den Fall, dass die Orthonormalbasis [mm] B'=\{\frac{1}{5}\vektor{3\\0\\4},\frac{1}{5}\vektor{-4\\0\\3}; \vektor{0\\-1\\0}\} [/mm] lautet.

Guten Tag.

Mein Idee zur obigen Aufgabe:

Vektoren aus B sollen in B' überführt würden.
Jeder Vektor im Vektorraum [mm] \IR [/mm] kann durch B dargestellt werden.
Da nun B' als neue Basis fungieren soll, müsste jeder Vektor im [mm] \IR [/mm] ebenfalls durch B' dargestellt werden können.

Ich wollte nun so vorgehen, dass ich ein LGS bilde, sodass gilt
[mm] \lambda_{1}e_{1}+\lambda_{2}e_{2}+\lambda_{3}e_{3}=\frac{1}{5}\vektor{3\\0\\4} [/mm]

Das lässt sich durchführen für die drei neuen Basen, sodass ich daraus die Transformationsmatrix T erhalten müsste.
Ist der Ansatz so richtig?

Grüße

        
Bezug
Basiswechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:55 Di 05.03.2013
Autor: fred97

Schau mal hier:

http://de.wikipedia.org/wiki/Basiswechsel_(Vektorraum)

"Spezialfälle"

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]