Basiswechsel < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:09 Mi 30.04.2014 | Autor: | bla234 |
Aufgabe | [mm] v_{k}(x,y,z)=\bruch{1}{\wurzel{x^{2}+y^{2}}} [/mm] * [mm] \pmat{ xz \\ yz\\x^{2}+y^{2} }
[/mm]
a) v in Zylinderkoordinaten
b) div v in kartesischen und Zylinderkoordinaten
c) rot v in kartesischen und Zylinderkoordinaten |
[mm] v_{k}=\bruch{1}{\wurzel{x^{2}+y^{2}}} [/mm] * [mm] \pmat{ xz \\ yz\\x^{2}+y^{2} }
[/mm]
a) [mm] v_{kz}(r,\phi,z) [/mm] = [mm] \bruch{1}{r} \pmat{z*r*cos(\phi) \\ z*r*sin(\phi) \\ r^{2}} [/mm] = [mm] \pmat{z*cos(\phi) \\ z*sin(\phi) \\ r}
[/mm]
b) Divergenz in Zylinderkoordinaten bekomme ich hin. Aber in den Kartesischen Koordinaten soll [mm] \bruch{z}{\wurzel{x^{2} + y^{2}}} [/mm] rauskommen, tut es bei mir aber nicht. Dh. irgendwo muss die Ableitung net stimmen. Aber ich finde den Fehler nicht...
div [mm] v_{k} [/mm] = [mm] \bruch{\delta \bruch{xz}{\wurzel{x^{2} + y^{2}}}}{\delta x} [/mm] + [mm] \bruch{\delta \bruch{yz}{\wurzel{x^{2} + y^{2}}}}{\delta y} [/mm] + [mm] \bruch{\delta \bruch{x^{2} + y^{2}}{\wurzel{x^{2} + y^{2}}}}{\delta z} [/mm] = [mm] \bruch{z}{\wurzel{x^{2}+y^{2}}} [/mm] - [mm] \bruch{x^{2}z}{(x^{2}+y^{2})^{\bruch{3}{2}}} [/mm] + [mm] \bruch{z}{\wurzel{x^{2}+y^{2}}} [/mm] - [mm] \bruch{y^{2}z}{(x^{2}+y^{2})^{\bruch{3}{2}} } [/mm]
Ich sehe nicht, wie ich da auf das Ergebnis kommen soll?
c) Bei der Rotation soll 0 rauskommen.
rot [mm] v_{k} [/mm] = [mm] \pmat{ \bruch{\delta v_{k3}}{\delta y} - \bruch{\delta v_{k2}}{\delta z} \\ \bruch{\delta v_{k1}}{\delta z} - \bruch{\delta v_{k3}}{\delta x} \\ \bruch{\delta v_{k2}}{\delta x} - \bruch{\delta v_{k1}}{\delta y}}
[/mm]
Erste Zeile:
[mm] \bruch{2y*\wurzel{x^{2}+y^{2}}-(x^{2}+y^{2})*\bruch{1}{2*\wurzel{x^{2}+y^{2}}}}{x^{2}+y^{2}} [/mm] - [mm] \bruch{y}{\wurzel{x^{2}+y^{2}}} =\bruch{2y}{\wurzel{x^{2}+y^{2}}} [/mm] - [mm] \bruch{1}{2*\wurzel{x^{2}+y^{2}}} [/mm] - [mm] \bruch{y}{\wurzel{x^{2}+y^{2}}}
[/mm]
So kommt sicher nicht 0 raus... Ich finde auch hier den Fehler nicht :[
Vielen Dank für jede Hilfe,
bla
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:08 Fr 02.05.2014 | Autor: | wauwau |
> [mm]v_{k}(x,y,z)=\bruch{1}{\wurzel{x^{2}+y^{2}}}[/mm] * [mm]\pmat{ xz \\ yz\\x^{2}+y^{2} }[/mm]
>
> a) v in Zylinderkoordinaten
> b) div v in kartesischen und Zylinderkoordinaten
> c) rot v in kartesischen und Zylinderkoordinaten
> [mm]v_{k}=\bruch{1}{\wurzel{x^{2}+y^{2}}}[/mm] * [mm]\pmat{ xz \\ yz\\x^{2}+y^{2} }[/mm]
>
> a) [mm]v_{kz}(r,\phi,z)[/mm] = [mm]\bruch{1}{r} \pmat{z*r*cos(\phi) \\ z*r*sin(\phi) \\ r^{2}}[/mm]
> = [mm]\pmat{z*cos(\phi) \\ z*sin(\phi) \\ r}[/mm]
>
> b) Divergenz in Zylinderkoordinaten bekomme ich hin. Aber
> in den Kartesischen Koordinaten soll
> [mm]\bruch{z}{\wurzel{x^{2} + y^{2}}}[/mm] rauskommen, tut es bei
> mir aber nicht. Dh. irgendwo muss die Ableitung net
> stimmen. Aber ich finde den Fehler nicht...
>
> div [mm] $v_{k}= \bruch{\delta \bruch{xz}{\wurzel{x^{2} + y^{2}}}}{\delta x} [/mm] + [mm] \bruch{\delta \bruch{yz}{\wurzel{x^{2} + y^{2}}}}{\delta y} [/mm] + [mm] \bruch{\delta \bruch{x^{2} + y^{2}}{\wurzel{x^{2} + y^{2}}}}{\delta z} [/mm]
= [mm] \bruch{z}{\wurzel{x^{2}+y^{2}}} [/mm] - [mm] \bruch{x^{2}z}{(x^{2}+y^{2})^{\bruch{3}{2}}}+ \bruch{z}{\wurzel{x^{2}+y^{2}}} [/mm] - [mm] \bruch{y^{2}z}{(x^{2}+y^{2})^{\bruch{3}{2}} } [/mm]
Umformung
[mm] $=\frac{2z}{\sqrt{x^2+y^2}}-\frac{x^2z+y^2z}{(x^2+y^2)^{\frac{3}{2}}}$
[/mm]
[mm] $=\frac{2z}{\sqrt{x^2+y^2}}-\frac{(x^2+y^2)z}{(x^2+y^2)^{\frac{3}{2}}}=\frac{2z}{\sqrt{x^2+y^2}}-\frac{z}{(x^2+y^2)^{\frac{1}{2}}} [/mm] = [mm] \frac{z}{\sqrt{x^2+y^2}}$
[/mm]
>
> Ich sehe nicht, wie ich da auf das Ergebnis kommen soll?
>
> c) Bei der Rotation soll 0 rauskommen.
>
> rot [mm]v_{k}[/mm] = [mm]\pmat{ \bruch{\delta v_{k3}}{\delta y} - \bruch{\delta v_{k2}}{\delta z} \\ \bruch{\delta v_{k1}}{\delta z} - \bruch{\delta v_{k3}}{\delta x} \\ \bruch{\delta v_{k2}}{\delta x} - \bruch{\delta v_{k1}}{\delta y}}[/mm]
>
> Erste Zeile:
>
> [mm]\bruch{2y*\wurzel{x^{2}+y^{2}}-(x^{2}+y^{2})*\bruch{1}{2*\wurzel{x^{2}+y^{2}}}}{x^{2}+y^{2}}[/mm]
> - [mm]\bruch{y}{\wurzel{x^{2}+y^{2}}} =\bruch{2y}{\wurzel{x^{2}+y^{2}}}[/mm]
> - [mm]\bruch{1}{2*\wurzel{x^{2}+y^{2}}}[/mm] -
> [mm]\bruch{y}{\wurzel{x^{2}+y^{2}}}[/mm]
>
richtig
[mm] $\bruch{\delta v_{k3}}{\delta y} [/mm] - [mm] \bruch{\delta v_{k2}}{\delta z} =\frac{\delta}{\delta y}\sqrt{x^2+y^2} [/mm] - [mm] \frac{\delta}{\delta z}\frac{yz}{\sqrt{x^2+y^2}} [/mm] = [mm] \frac{2y}{2\sqrt{x^2+y^2}}-\frac{y}{\sqt{x^2+y^2}}=0$
[/mm]
> So kommt sicher nicht 0 raus... Ich finde auch hier den
> Fehler nicht :[
>
> Vielen Dank für jede Hilfe,
> bla
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:16 So 11.05.2014 | Autor: | bla234 |
...Danke
|
|
|
|