matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasistransformation/ Begriffe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Basistransformation/ Begriffe
Basistransformation/ Begriffe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basistransformation/ Begriffe: allgemeines Verständnis
Status: (Frage) beantwortet Status 
Datum: 10:44 Di 16.05.2006
Autor: Esperanza

Hallo Leute!

Da ich im Internet allgemein nix wirklich befriedigendes gefunden habe zu meinen Fragen, stelle ich sie hier mal. Vielleicht kann mir das jemand schlaues von euch erklären :-)

1. Was ist ein Koordinatenvektor?
2. Wie steht er im Zusammenhang mit Basistransformationen?
3. Was bedeuted es wenn er "bezüglich einer Basis" angegeben wird?
4. Was bedeuted eine Basistransformation?
5. Wie berechnet man sowas?

Bsp.:

geg:  v = [mm] (v)_{I}\in\IK^n [/mm] , ein Koordinatenvektor (bezüglich der Standartbasis I des [mm] \IK^n), [/mm] und [mm] X=\{x_1, x_2.....x_n\}, [/mm] eine (beliebige) Basis des [mm] \IK^n. [/mm]

ges: [mm] (v)_X=(\alpha_1, \alpha_2,.....,\alpha_n)^T \in\IK^n, [/mm] der Koordinatenvektor bezüglich X.

Leider versteh ich schon die Aufgabenstellung nicht. :-(

Kann mir jemand helfen?

Liebe Grüße, Esperanza

        
Bezug
Basistransformation/ Begriffe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Mi 17.05.2006
Autor: DaMenge

Hallo,

>  
> 1. Was ist ein Koordinatenvektor?
>  3. Was bedeuted es wenn er "bezüglich einer Basis"
> angegeben wird?


Ja also einen Vektor v kann man ja darstellen als :
[mm] $\vektor{v_1\\v_2\\:\\v_n}=v_1 *e_1 [/mm] + [mm] v_2 *e_2+..+v_n *e_n$ [/mm]
wobei die [mm] e_i [/mm] die Standardvektoren sein sollen.

Man kann denselben Vektor aber auch  bzgl einer anderen Basis darstellen zum beispiel zu der Basis X:
[mm] $\vektor{\alpha_1\\\alpha_2\\:\\\alpha_n}=\alpha_1 *x_1 [/mm] + [mm] \alpha_2 *x_2+..+\alpha_n *x_n$ [/mm]

D.h. die Darstellung eines Vektor (=Koordinatenvektor) hängt entscheidend von der Wahl der Basis ab !



>  2. Wie steht er im Zusammenhang mit
> Basistransformationen?
>  4. Was bedeuted eine Basistransformation?


Ja angenommen du hast [mm] $\vektor{v_1\\v_2\\:\\v_n}$ [/mm] gegeben und willst mittels einer linearen Abbildung f den Vektor [mm] $\vektor{\alpha_1\\\alpha_2\\:\\\alpha_n}$ [/mm] rausbekommen, d.h. du suchst eine Matrix M, so dass : [mm] $M*\vektor{v_1\\v_2\\:\\v_n}=\vektor{\alpha_1\\\alpha_2\\:\\\alpha_n}$ [/mm]

also sucht man eine MBTransformationsmatrix (<- click mich !)


>  5. Wie berechnet man sowas?
> Bsp.:
>
> geg:  v = [mm](v)_{I}\in\IK^n[/mm] , ein Koordinatenvektor
> (bezüglich der Standartbasis I des [mm]\IK^n),[/mm] und [mm]X=\{x_1, x_2.....x_n\},[/mm]
> eine (beliebige) Basis des [mm]\IK^n.[/mm]
>  
> ges: [mm](v)_X=(\alpha_1, \alpha_2,.....,\alpha_n)^T \in\IK^n,[/mm]
> der Koordinatenvektor bezüglich X.


Wenn du dir obigen Link angesehen, dann erkennst du hoffentlich, dass :
(die Vektoren von X stehen als SPALTEN in der Matrix links !)
[mm] $\pmat{(x_1&x_2&..&x_n}*\vektor{\alpha_1\\\alpha_2\\:\\\alpha_n}=\vektor{v_1\\v_2\\:\\v_n}$ [/mm]
denn links steht nach dem ausmultiplizieren gerade :
[mm] $\alpha_1 *x_1 [/mm] + [mm] \alpha_2 *x_2+..+\alpha_n *x_n$ [/mm]

so, das kann man aber jetzt sofort umstellen zu :
[mm] $\pmat{(x_1&x_2&..&x_n} [/mm] ^{-1} [mm] *\vektor{v_1\\v_2\\:\\v_n}=\vektor{\alpha_1\\\alpha_2\\:\\\alpha_n}$ [/mm]

das wars dann auch schon, wenn man keine speziellen Werte gegeben hat...

für dieses Thema empfihlt sich auch []DIESER ARTIKEL (aufm MathePlanet)

viele Grüße
DaMenge


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]