matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasis von U(orth.) bzgl Sesqlf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Basis von U(orth.) bzgl Sesqlf
Basis von U(orth.) bzgl Sesqlf < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von U(orth.) bzgl Sesqlf: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:58 So 21.05.2006
Autor: Riley

Aufgabe
In V = [mm] C^4 [/mm] sei u durch die Gleichungen
[mm] z_3 [/mm] - [mm] z_4 [/mm] = 0, [mm] z_1 [/mm] + [mm] \bruch{1}{3} z_2 [/mm] + [mm] z_3 [/mm] = 0 gegebene Teilraum.
Man bestimme eine Basis von U (rechtsorthogonal) bzgl der Sesquilinearform [mm] \beta (\nu, \mu) [/mm] = [mm] z_1 \overline{w_1} [/mm] - i [mm] z_2 \overline{w_2} [/mm] + [mm] z_3 \overline{w_4} [/mm] - [mm] z_4 \overline{w_3} [/mm]


Hi, hab nun einen teil der lösung, versteh aber noch nicht ganz, warum das so funtioniert!
würd mich ganz arg freuen, wenn ihr mir das erklären könntet!!!*verzweifel*

also als erstes bekommt man durch die 2 gleichungen die den Teilraum U angeben ein LGS. Wie können aber diese 2 gleichungen den Raum U aufspannen??

das LGS:
[mm] \pmat{ 1 & 0 & 0 & 1 \\ 1 & 1/3 & 1 & 0 } [/mm]
Fundamentallösungen sind:
[mm] a_1= \pmat{ 0 \\ -3 \\ 1 \\ 0} [/mm] und [mm] a_2 [/mm] =  [mm] \pmat{ -1\\ 3 \\ 0 \\1 } [/mm]
warum ist dann die Basis von U [mm] {a_1, a_2} [/mm] ??

die definition von so einem orthogonalen komplement ist ja:
X(orth) = { y aus V| [mm] \beta(x,y) [/mm] = 0 für alle x aus X} wobei X aus V.

d.h. ich muss [mm] \beta(a_1,y) [/mm] = 0  und [mm] \beta(a_2,y)=0 [/mm] berechnen, d.h. ich setz die [mm] a_i [/mm] für [mm] z_i [/mm] in der gleichung ein, und bekomm
[mm] \beta(a_1,y) [/mm] = 3 i [mm] \overline{w_2} [/mm] + [mm] \overline{w_4} [/mm] = 0 und
[mm] \beta(a_2,y) [/mm] = - [mm] \overline{w_1} [/mm] - 3 i [mm] \overline{w_2} [/mm] - [mm] \overline{w_3} [/mm] = 0

jetzt muss ich davon wieder die fundamentallösungen von dem LGS berechnen, oder??
und was mach ich mit den komplex konjugierten w's?
kann ich das "ganz normal" in ne matrix schreiben:

[mm] \pmat{ 0 & 3i & 0 & 1 \\ -1 & - 3i& -1 & 0 } [/mm]


viele grüße riley






        
Bezug
Basis von U(orth.) bzgl Sesqlf: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 05.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]