matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis von C(I)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis von C(I)
Basis von C(I) < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von C(I): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Mo 12.07.2010
Autor: quarkstollen88

Ich habe hier ein [mm] X=C^{0} [/mm] ([-1,1]) und M = { f [mm] \in [/mm] X | f(x)=0 für x<=0 } und brauche nun eine Basis für M. Aber wie sehen dnen überhaupt Basen von solchen Räumen wie C(I) aus (I Intervall)? Und wie sieht dann die Basis von M aus?
Ich kann mir nichtmal ansatzweise vorstellen wie eine Basis von solchen Räumen aussehen soll. Klar, die Basiselemente sind Funktionen, aber mehr weiß ich nicht.

Wäre super wenn mir jemand schnell helfen könnte :)



ERGÄNZUNG: Falls das wichtig ist: Es ist noch ein Skalarprodukt (,) auf X gegeben.:

(f,g) = [mm] \integral_{-1}^{1}{f(x)g(x) dx}[/mm]

        
Bezug
Basis von C(I): Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Mo 12.07.2010
Autor: felixf

Moin!

> Ich habe hier ein [mm]X=C^{0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

([-1,1]) und M = { f [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

X |

> f(x)=0 für x<=0 } und brauche nun eine Basis für M. Aber
> wie sehen dnen überhaupt Basen von solchen Räumen wie
> C(I) aus (I Intervall)? Und wie sieht dann die Basis von M
> aus?

Eine soche Basis ist ueberabzaehlbar und ohne das Auswahlaxiom muss eine solche nichtmals umbedingt existieren. Du hast also keine Moeglichkeit, eine solche Basis explizit hinzuschreiben.

>  Ich kann mir nichtmal ansatzweise vorstellen wie eine
> Basis von solchen Räumen aussehen soll. Klar, die
> Basiselemente sind Funktionen, aber mehr weiß ich nicht.

Das kann sich niemand wirklich vorstellen :)

> ERGÄNZUNG: Falls das wichtig ist: Es ist noch ein
> Skalarprodukt (,) auf X gegeben.:
>  
> (f,g) = [mm]\integral_{-1}^{1}{f(x)g(x) dx}[/mm]  

Was du tun kannst ist hoechstens eine (abzaehlbare) []Orthonormalbasis (siehe "allgemeiner Fall" auf der Seite) anzugeben bzw. allgemeiner eine []Schauderbasis.

Das sind aber keine Vektorraumbasen im eigentlichen Sinne (solche heissen uebrigens auch Hamelbasen).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]