matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBasis eines Faktorraumes
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Basis eines Faktorraumes
Basis eines Faktorraumes < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis eines Faktorraumes: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:08 Mi 08.12.2010
Autor: d_nl

Aufgabe
Sei V der 4-dimensionale [mm] \IZ_{2}-Vektorraum (\IZ_{2})^{4} [/mm] und U [mm] \subseteq [/mm] V der Unterraum U = <(1,0,0,1),(1,0,1,0)>. Bestimmen Sie eine Basis des Faktorraums V/U.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich suche einen Ansatz für diese Aufgabe.
Ich verstehe auch leider noch nicht so recht, was passiert, wenn der Vektorraum V nach U faktorisiert wird.
Bitte um Hilfe.
Danke!

        
Bezug
Basis eines Faktorraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 07:49 Sa 11.12.2010
Autor: angela.h.b.


> Sei V der 4-dimensionale [mm]\IZ_{2}-Vektorraum (\IZ_{2})^{4}[/mm]
> und U [mm]\subseteq[/mm] V der Unterraum U = <(1,0,0,1),(1,0,1,0)>.
> Bestimmen Sie eine Basis des Faktorraums V/U.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  
> ich suche einen Ansatz für diese Aufgabe.
>  Ich verstehe auch leider noch nicht so recht, was
> passiert, wenn der Vektorraum V nach U faktorisiert wird.

Hallo,

[willkommenmr].

Wenn das so ist, dann sollten wir die Suche nach einer Basis noch zurückstellen und uns mit dem Raum V/U und seinen Elementen beschäftigen.

Es ist [mm] V/U:={v+U|v\in V\}. [/mm]

Dabei ist für jedes [mm] v\in [/mm] V die Menge v+U definiert als

[mm] v+U:={v+u|u\in U\}. [/mm]

Der Raum V/U ist also eine Menge, die Mengen einer gewissen Machart enthält.
Ihr hattet auf V/U Verknüpfungen definiert und festgestellt: mit diesen ist V/U ein Vektorraum.
Dies Verknüpfungen solltest Du Dir nochmal anschauen, ohne diese geht's nicht.

Gehen wir mal in den [mm] V:=\IR^3 [/mm] und betrachten den Unterraum [mm] U:=<\vektor{1\\2\\3}>. [/mm]
Die Mengen v+U kennst Du aus der Schule: es sind die Geraden mit Richtungsvektor [mm] \vektor{1\\2\\3} [/mm] durch den Punkt mit dem Ortsvektor v.

Nun suchen wir eine Basis von [mm] \IR^3/<\vektor{1\\2\\3}>. [/mm]

Zunächst mal muß uns klar sein, daß diese Basis aus Elementen von [mm] \IR^3/<\vektor{1\\2\\3}> [/mm] besteht.

Eine Basis ist ein Erzeugendensystem, Du mußt also jedes Element [mm] \vektor{x\\y\\z}+<\vektor{1\\2\\3}> [/mm] als Linearkombination Deiner Basiselemente schreiben können, und Deine Basiselemente müssen linear unabhängig sein.

Ein kl. Tip: es ist nützlich, sich zu überlegen, wie man [mm] \vektor{1\\2\\3} [/mm] zu einer Basis vom [mm] \IR^3 [/mm] ergänzen kann.


Wenn Dir das gelungen ist, wirst Du auch die von Dir zu bearbeitende Aufgabe können.

Gruß v. Angela





>  Bitte um Hilfe.
>  Danke!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]