Basis bestimmen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:26 Fr 26.03.2010 | Autor: | peeetaaa |
Aufgabe | Es sei U der Unterraum des Vektorraums V:= [mm] \IR^4 [/mm] der von der Menge
S:= [mm] \vektor{1 \\ 2 \\ 0 \\ 3}, \vektor{5 \\ 3 \\ 1 \\ 1}, \vektor{3 \\ 2 \\ 0 \\ -1}, \vektor{1 \\ -1 \\ 1 \\ -1} [/mm] erzeugt wird. Bestimmen Sie eine Basis. |
Hallo,
komme bei der Aufgabe nicht ganz weiter.
Wollte die Vektoren in eine Matrix schreiben und dann gucken welche linear unabhängig sind!
[mm] \pmat{ 1 & 5 & 3 & 1 \\ 2 & 3 & 2 & -1 \\ 0 & 1 & 0 & 1 \\ 3 & 1 & -1 & -1 }
[/mm]
[mm] \pmat{ 1 & 5 & 3 & 1 \\ 0 & -7 & -4 & -3 \\ 0 & 1 & 0 & 1 \\ 0 & -14 & -10 & -4 }
[/mm]
[mm] \pmat{ 1 & 5 & 3 & 1 \\ 0 & -7 & -4 & -3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 }
[/mm]
[mm] \pmat{ 1 & 5 & 3 & 1 \\ 0 & 0 & -4 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 }
[/mm]
[mm] \pmat{ 1 & 0 & 3 & -4 \\ 0 & 0 & -4 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 }
[/mm]
[mm] \pmat{ 1 & 0 & 3 & -4 \\ 0 & 0 & 0 & 8 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1}
[/mm]
[mm] \pmat{ 1 & 0 & 0 & -7 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1}
[/mm]
[mm] \pmat{ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0}
[/mm]
naja und das würde ja eigentlich heißen, dass der Rang der Matrix maximal ist und diese damit linear unabhängig...aber in der Lösung steht, dass der zweite Vektor rausfällt, da dieser durch die Summe der anderen 3 Vektoren dargestellt werden kann.
Jetzt wollte ich fragen wo mein Fehler hier ist?
Danke schonmal!
|
|
|