matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis,Schnitt Unterräume, Span
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis,Schnitt Unterräume, Span
Basis,Schnitt Unterräume, Span < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis,Schnitt Unterräume, Span: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:48 So 09.11.2014
Autor: hevaloop

Aufgabe
(a) Gegeben seien die folgenden Unterräume des [mm] R^3: [/mm]
[mm] U_1 [/mm] := Spann { [mm] \pmat{ 1 & 2 & 3 }, \pmat{ 1 & 1 &1} [/mm] }, [mm] U_2 [/mm] := Spann { [mm] \pmat{ 1 & 5 & 6 }, \pmat{ 1 & 0 &1} [/mm] }
Bestimmen Sie eine Basis von [mm] U_1 \cap U_2. [/mm]

(b)Bestimmen Sie, welche Dimension der Durchschnitt eines dreidimensionalen und eines vierdimensionalen Untervektorraums in einem sechsdimensionalen Vektorraum haben kann.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

zu a)
[mm] U_1 [/mm] und [mm] U_2 [/mm] spannen jeweils eine Ebene im [mm] R^3 [/mm] auf.
Also [mm] E_1: [/mm] Lamda (1,2,3) + Mü (1,1,1)
[mm] E_2: [/mm] alpha (1,5,6) + beta (1,0,1)
Nun muss man diese beiden Ebenen doch irgendwie gleichsetzen, um einen Schnittpunkt zu erhalten, oder? Allerdings bräuchte ich dafür doch zuerst einen Stützvektor, den ich aber nicht habe... wie gehe ich da nun direkt vor?
Die Basis meines Schnittes von [mm] U_1 [/mm] und [mm] U_2 [/mm] ist dann der Richtungvektor der Schnittgeraden? Allerdings weiß ich nicht, wie ich diese Schnittgerade erhalten kann. Bitte um Hilfe.

Aufgabe b) ist erstmal irrelevant....


Danke schon mal!

        
Bezug
Basis,Schnitt Unterräume, Span: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 So 09.11.2014
Autor: MathePower

Hallo hevaloop,


[willkommenmr]


> (a) Gegeben seien die folgenden Unterräume des [mm]R^3:[/mm]
>  [mm]U_1[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= Spann { [mm]\pmat{ 1 & 2 & 3 }, \pmat{ 1 & 1 &1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

},

> [mm]U_2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= Spann { [mm]\pmat{ 1 & 5 & 6 }, \pmat{ 1 & 0 &1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  Bestimmen Sie eine Basis von [mm]U_1 \cap U_2.[/mm]
>  
> (b)Bestimmen Sie, welche Dimension der Durchschnitt eines
> dreidimensionalen und eines vierdimensionalen
> Untervektorraums in einem sechsdimensionalen Vektorraum
> haben kann.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> zu a)
>  [mm]U_1[/mm] und [mm]U_2[/mm] spannen jeweils eine Ebene im [mm]R^3[/mm] auf.
> Also [mm]E_1:[/mm] Lamda (1,2,3) + Mü (1,1,1)
>  [mm]E_2:[/mm] alpha (1,5,6) + beta (1,0,1)
>  Nun muss man diese beiden Ebenen doch irgendwie
> gleichsetzen, um einen Schnittpunkt zu erhalten, oder?
> Allerdings bräuchte ich dafür doch zuerst einen
> Stützvektor, den ich aber nicht habe... wie gehe ich da
> nun direkt vor?


Einen Stützvektor benötigst Du nicht.

Es ist die Lösungsmenge von

[mm]E_{1}=E_{2}[/mm]

zu bestimmen.


>  Die Basis meines Schnittes von [mm]U_1[/mm] und [mm]U_2[/mm] ist dann der
> Richtungvektor der Schnittgeraden? Allerdings weiß ich
> nicht, wie ich diese Schnittgerade erhalten kann. Bitte um
> Hilfe.
>  
> Aufgabe b) ist erstmal irrelevant....
>  
>
> Danke schon mal!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]