matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasis Bild/Kern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Basis Bild/Kern
Basis Bild/Kern < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis Bild/Kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Sa 10.12.2005
Autor: FunDancerBhv

Hallo,
wie sieht das aus, wenn ich nun eine Matrix mit mehr Zeilen als Spalten habe. Im konkreten Fall wäre dies die Matrix
[mm] \pmat{ 3 & 3 & 1&1\\ 1&1&2&3\\4&2&1&3\\3&1&4&4\\2&1&3&1 } [/mm]
Wenn ich diese nun mit dem angegebenen Algorithmus lt. der Antwort bearbeite (Transponieren rechts daneben die Einheitsmatrix und Umformung in eine obere Dreiecksmatrix=Zeilenstufenform) bekomme ich in der linken Matrix keine Nullzeilen, und daher keine Basis des Kerns. Was mache ich hier falsch?
Mein Ergebnis:
[mm] \pmat{1&2&3&1&4|&2&0&0&0\\ 0&1&0&3&2|&3&0&0&1\\ 0&0&1&4&2|&4&0&3&0\\ 0&0&0&1&3|&2&1&1&0\\ } [/mm]
Dabei dienen die | nur als Trennstrich zwischen der linken transponierten Matrix und der rechten ehemaligen Einheitsmatrix.

Gruß
  FunDancerBhv

        
Bezug
Basis Bild/Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 So 11.12.2005
Autor: angela.h.b.


> Hallo,

Hallo,

und  [willkommenmr]  .

>  wie sieht das aus,

Was denn eigentlich ...?

Der Überschrift entnehme ich, daß Du Kern und Bild bestimmen möchtest.

Der Kern ist bei dieser Matrix = {0}.
Von daher ist es gar kein Wunder, daß Du keine Basis des Kerns ablesen kannst, der Kern hat ja die Dimension 0.

Gruß v. Angela







wenn ich nun eine Matrix mit mehr

> Zeilen als Spalten habe. Im konkreten Fall wäre dies die
> Matrix
>   [mm]\pmat{ 3 & 3 & 1&1\\ 1&1&2&3\\4&2&1&3\\3&1&4&4\\2&1&3&1 }[/mm]
>  
> Wenn ich diese nun mit dem angegebenen Algorithmus lt. der
> Antwort bearbeite (Transponieren rechts daneben die
> Einheitsmatrix und Umformung in eine obere
> Dreiecksmatrix=Zeilenstufenform) bekomme ich in der linken
> Matrix keine Nullzeilen, und daher keine Basis des Kerns.
> Was mache ich hier falsch?
> Mein Ergebnis:
>  [mm]\pmat{1&2&3&1&4|&2&0&0&0\\ 0&1&0&3&2|&3&0&0&1\\ 0&0&1&4&2|&4&0&3&0\\ 0&0&0&1&3|&2&1&1&0\\ }[/mm]
>  
> Dabei dienen die | nur als Trennstrich zwischen der linken
> transponierten Matrix und der rechten ehemaligen
> Einheitsmatrix.
>  
> Gruß
>    FunDancerBhv


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]