matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasen und Dimensionen bestimme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Basen und Dimensionen bestimme
Basen und Dimensionen bestimme < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen und Dimensionen bestimme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:20 Sa 03.02.2007
Autor: agga

Aufgabe
Betrachte die Unterräume $U = Span((1,3,0,1), (1,0,0,-1), (-1,3,0,3)), W = Span((0,3,2,2), (0,0,2,0))$ des Vektorraumes [mm] $\IR^4$. [/mm] Bestimme Basen und die Dimension von $U, W, U [mm] \cap [/mm] W, U+W$.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,
das Thema ist bei uns neu und ich werde aus den Aufzeichnungen aus der Vorlesung nicht wirklich schlau. Kann mir bitte jemand sagen, wie man denn Basen und Dimension aus einem Spann bestimmt und wie man den Durchschnitt bzw. die Summe bildet. Könnte das eventuell jemand anhand einer Beispielrechnung machen? Ich wär euch wirklich voll dankbar. Vielleicht könntet ihr sogar die Ergebnisse von allen vier Teilen hinschreiben, sodass ich dann kontrollieren kann, ob ich dann für mich nach der Rechnung das richtige Ergebnis rausgekriegt hab.
Gruß
Agga

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Basen und Dimensionen bestimme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Sa 03.02.2007
Autor: thoma2

dim U bzw. dim V bestimmst du normal mit gauss

bei den anderen schreibst du dir eine matrix mit  [mm] \pmat{ U^T & U^T \\ V^T & 0 } [/mm]
und bringst sie mit gauss auf obere dreiecksform.

bsp.:
sei U = [mm] <\vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 0}> [/mm]
und V =  [mm] <\vektor{0 \\ 1 \\ 1},\vektor{1 \\ 0 \\ 0}> [/mm]

dann ist [mm] \pmat{ U^T & U^T \\ V^T & 0 } [/mm] =

[mm] \pmat{ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\1 & 0 & 0 & 0 & 0 & 0 \\} [/mm]

auf obere dreiecksform
[mm] \pmat{ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ [red]0[/red] & [red]0[/red] & [red]0[/red] & -1 & 0 & 0 \\} [/mm]

aus der linken seite, oberhalb der roten nullen, folgt, T+U = [mm] \IR^3 [/mm] und aus der rechten seite, neben den roten nullen, folgt T [mm] \cap [/mm] U = [mm] E_{1} [/mm]

dim [mm] \IR^3 [/mm] = 3
dim [mm] E_{1} [/mm] = 1
sollte klar sein




Bezug
                
Bezug
Basen und Dimensionen bestimme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Sa 03.02.2007
Autor: agga

Hi thoma, danke schonmal für die Erklärung. Ich rechne jetzt mal mit meiner Aufgabe vor. Wäre echt lieb von dir, ob du mir dann sagen könntest, ob alles richtig gerechnet ist und ob ichs verstanden hab. Ansonsten bitte Korrektur.
Also für U:
[mm] $\pmat{ 1 & 3 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ -1 & 3 & 0 & 3 } \sim \pmat{ 1 & 3 & 0 & 1 \\ 0 & -3 & 0 & -2 \\ 0 & 6 & 0 & 4 } \sim \pmat{ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & \frac{2}{3} \\ 0 & 0 & 0 & 0 }$ [/mm]
Also müsste die Dimension von U = 2 sein, da nur noch zwei Vektoren übrigbleiben nach Gauß. Und als Basis kann ich dann nehmen $< [mm] \vektor{1 \\ 0 \\ 0 \\ -1} [/mm] , [mm] \vektor{0 \\ 1 \\ 0 \\ \frac{2}{3}} [/mm] >$ , richtig?
Für W:
[mm] $\pmat{ 0 & 3 & 2 & 2 \\ 0 & 0 & 2 & 0 } \sim \pmat{ 0 & 3 & 0 & 2 \\ 0 & 0 & 1 & 0 }$ [/mm]
Also ist hier die Dimension auch von W = 2 mit der Basis $< [mm] \vektor{0 \\ 3 \\ 0 \\ 2} [/mm] , [mm] \vektor{0 \\ 0 \\ 1 \\ 0} [/mm] >$ , richtig?
So, wenn ich dann die Ergebnisse in diese Matrix einsetze, dann erhalte ich folgendes:
[mm] $\pmat{ 1 & 0 & 0 & -1 & 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & \frac{2}{3} & 0 & 1 & 0 & \frac{2}{3} \\ 0 & 3 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 } \sim \pmat{ 1 & 0 & 0 & -1 & 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & \frac{2}{3} & 0 & 1 & 0 & \frac{2}{3} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 & 2 }$ [/mm]
Wenn ich das dann verstanden habe, bekomme ich für $U + W = [mm] \IR^3$ [/mm] ??? und für $dim(U [mm] \cap [/mm] W) = 1$ und als Basis von $U [mm] \cap [/mm] W = [mm] <\vektor{0 \\ 3 \\ 0 \\ 2}>$ [/mm]
Habe ich so alles richtig gemacht?
Gruß
agga

Ich habe diese Frage in keinem anderen Internetforum gestellt

Bezug
                        
Bezug
Basen und Dimensionen bestimme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 So 04.02.2007
Autor: thoma2

das sieht soweit ganz gut aus. nur hast du U + W nicht richtig interpretiert.

[mm] \pmat{ 1 & 0 & 0 & -1 & 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & \frac{2}{3} & 0 & 1 & 0 & \frac{2}{3} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 & 2 } [/mm]

denn eine basis von U + W = < [mm] \vektor{1 \\ 0 \\ 0 \\ -1},\vektor{0 \\ 1 \\ 0 \\ \bruch{2}{3}},\vektor{0 \\ 0 \\ 1 \\ 0}> [/mm]


Bezug
                                
Bezug
Basen und Dimensionen bestimme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:38 Mo 05.02.2007
Autor: agga

Vielen Dank thoma, du hast mir wirklich sehr weitergeholfen.
Gruß
agga

Bezug
                
Bezug
Basen und Dimensionen bestimme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:50 So 04.02.2007
Autor: agga

Wenn thoma vielleicht keine Zeit hat, könnte dann eventuell jemand anderes nachrechnen und mir mitteilen ob ich das richtig gemacht habe.
Danke an alle!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]