matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperBasen eines Moduls
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Basen eines Moduls
Basen eines Moduls < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen eines Moduls: jede Basis des Mod. endlich?
Status: (Frage) überfällig Status 
Datum: 10:47 Mo 07.05.2007
Autor: matt57

Aufgabe
Sei R Ring mit Einselement und sei F ein endlich erzeugter Links R-Modul. Zeigen Sie, dass jede Basis von F endlich ist.

Mein Vorgehen wäre:
Ich habe also einen Modul.

Dieser ist def. als abelsche Gruppe (M, +) auf der die multiplikative Halbgruppe von R von links operiert, so dass zus. folgendes gilt:

1. r(u+v)=ru+rv für alle r [mm] \in [/mm] R, u,v [mm] \in [/mm] M
2. (r+s)u=ru+su für alle r,s [mm] \in [/mm] R, u [mm] \inM [/mm]

Wenn der Modul jetzt endlich erzeugt ist, dann gibt es

r1,..,rn für die gilt r1u1+...+rnun=0
wobei die triviale Nulllösung ausgeschlossen ist, denn es handelt sich ja schließlich um eine Basis.

Jedes r lässt sich wiederum schreiben bspw. als  r= r1-r2.

Damit sind die r's endlich erzeugt, soweit ich das verstanden habe und damit sind die u's lin. unabhängig, also Basis von F und mit den endlichen r's ist diese Basis ebenfalls endlich.
Ist das brauchbar?

Danke und Grüße
Matthias

        
Bezug
Basen eines Moduls: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:37 Sa 12.05.2007
Autor: MicMuc

Es wäre hilfreich gewesen, wenn Du angibst, wie die Deine/ Eure Definition eines Basis lautet.

Um Dir klar zu machen, warum man hier nicht direkt von einem endlichen erzeugenden System durch "Weglassen" von Erzeugern zu einer Basis kommt, noch folgendes Beispiel:

Nimm den Z Modul der von

[mm] $(9,0)^t, (15,0)^t, (0,4)^t, (0,6)^t$ [/mm] erzeugt ist.

Eine Basis als Z-Modul wäre beispielsweise:

[mm] $(3,0)^t,(0,2)^t$ [/mm]




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]