matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeBasen,Dimension
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Basen,Dimension
Basen,Dimension < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen,Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Sa 30.05.2009
Autor: Nataly

Aufgabe
V sei ein endlichdimensionaler K-Vektorraum. Zwei Unterraeume U1 und U2 heissen komplementaer,falls U1+U2:={u1+u2: u1 [mm] \in [/mm] U1, u2 [mm] \in [/mm] U2}=V und U1 [mm] \cap [/mm] U2= {0} gelten. Man beweise, dass zu einem beliebigen Unterraum U1 ein komplementaerer Unterraum existiert.

muss man hier evtl. mit dem Basisergaenzungssatz arbeiten????



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Basen,Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Sa 30.05.2009
Autor: angela.h.b.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> V sei ein endlichdimensionaler K-Vektorraum. Zwei
> Unterraeume U1 und U2 heissen komplementaer,falls
> U1+U2:={u1+u2: u1 [mm]\in[/mm] U1, u2 [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

U2}=V und U1 [mm]\cap[/mm] U2= {0}

> gelten. Man beweise, dass zu einem beliebigen Unterraum U1
> ein komplementaerer Unterraum existiert.
>  muss man hier evtl. mit dem Basisergaenzungssatz
> arbeiten????

Hallo,

[willkommenmr].

Basisergänzungssatz wäre eine gute Idee.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]