matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Basen
Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen: Erzeugendensystem
Status: (Frage) beantwortet Status 
Datum: 22:58 Mo 28.11.2005
Autor: oeli1985

Hallo zusammen,

ich sitze gerade an folgender Aufgabe:

a)
Zeigen sie, dass die Menge B:={ (1,2,3,4), (2,0,1,-1), (-1,0,0,1), (0,2,3,0) }
eine Basis des [mm] \IR [/mm] - Vektorraums [mm] \IR^{4} [/mm] ist.

b)
Ergänzen sie die Menge B':={ (0,4,5,9), (3,3,3,3) }
durch Elemente von B zu einer Basis von [mm] \IR^{4} [/mm]

zu a):

z.zg.: B ist Erzeugendensystem von [mm] \IR^{4} [/mm] und linear unabhängig

zur l.u.

LGS:
I ->  1a+2b-1c+0d=0
II->  2a+0b+0c+2d=0 [mm] \Rightarrow [/mm] a=(-d)
III-> 3a+b+0c+3d=0
IV -> 4a-1b+1c+0d=0

I+IV -> 5a+1b=0 [mm] \Rightarrow [/mm] a=(-0,2b)
4I-IV -> 9b-3c=0 [mm] \Rightarrow [/mm] c=3b
2III-3II -> b=0

also: a=b=c=d=0
somit: B ist linear unabhängig

Bis hier hin wars nicht so schwer (oder hab ich was falsch gemacht?).

Jetzt muss ich doch noch zeigen, dass ich durch Linearkombinationen der Elemente von B jeden Vektor aus [mm] \IR^{4} [/mm] erzeugen kann!?Also:

[mm] span_{k} [/mm] (B) = [mm] \IR^{4} [/mm]

Kann mir hier jemand weiterhelfen? Habe bisher noch keine wirkliche Idee, die ich nicht schon selber wieder widerlegt habe :-(

zu b)

Meiner Meinung nach muss ich B' mit (1,2,3,4) und (0,2,3,0) aus B ergänzen. Denn:

LGS:
I  ->  0a+3b+1c+0d=0 [mm] \Rightarrow [/mm] c=(-3b)
II ->  4a+3b+2c+2d=0
III -> 5a+3b+3c+3d=0
IV ->  9a+3b+4c+0d=0

I  ->  0a+3b+1c+0d=0 [mm] \Rightarrow [/mm] c=(-3b)

3II-2III -> 2a+3b=0 [mm] \Rightarrow [/mm] -3b=2a [mm] \Rightarrow [/mm] c=2a (*)
IV-I -> 9a+3c=0 [mm] \Rightarrow [/mm] c=(-3a) (!)

aus (*) und (!) folgt, dass a=0

III-II ->  1a+1c+1d=0 (%)
IV-III -> 4a+1c+0d=0 (§)

(§)-(%) -> 3a+d=0 [mm] \Rightarrow [/mm] d=(-3a) [mm] \Rightarrow [/mm] d=c

also: a=b=c=d=0
somit: B' ist in diesem Fall ebenfalls Basis von [mm] \IR^{4} [/mm]

Stimmt das? Oder kann ich aus (*) und (!) nicht folgern, dass a=0?

DANKE schon mal für eure Hilfe.

        
Bezug
Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:05 Di 29.11.2005
Autor: sole

Hi!
In a) hast du eine maximale linear unabhängige Teilmenge von [mm] \IR^{4} [/mm] gegeben, diese ist somit automatisch eine Basis von [mm] \IR^{4} [/mm]
In b) kannst du die Vektoren
[mm] v_{1}=(1,2,3,4) [/mm]
[mm] v_{2}=(0,2,3,0) [/mm]
[mm] v_{3}=(0,0,1,0) [/mm]
[mm] v_{4}=(0,0,0,1) [/mm]
wählen, da dann
[mm] v_{1}-v_{2}-4v_{4}=(1,0,0,0) [/mm]
[mm] .5(v_{2}-3v_{3})=(0,1,0,0) [/mm]
[mm] v_{3}=(0,0,1,0) [/mm]
[mm] v_{4}=(0,0,0,1) [/mm]
da dies eine Basis von [mm] \IR^{4} [/mm] ist muss nach dem Ausstauschsatz [mm] (v_{1},v_{2},v_{3},v_{4}) [/mm] auch eine Basis von [mm] \IR^{4} [/mm] sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]