matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBanachschen Fixpunktsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Banachschen Fixpunktsatz
Banachschen Fixpunktsatz < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachschen Fixpunktsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Mi 29.04.2015
Autor: checky

Aufgabe
Wie kann ich mit dem Banachschen Fixpunktsatz für folgende Gleichung [mm] x^6 [/mm] -3x+1 = 0 zeigen das sie auf bestimmten Intervallen genau eine Lösung hat?

Also zu zeigen ist, dass mit dem Banachschen Fixpunktsatz die Gleichung [mm] x^6-3x+1=0 [/mm] in den Intervallen [mm] \I I_{1} [/mm] = [ 0, 2/3] und  [mm] \I I_{2}= [/mm] [1, [mm] \infty] [/mm] jeweils genau eine Lösung a bzw b hat.
Geben sie jeweils ein Iterationsverfahren der Form

[mm] x\_{n+1}=f(x\_{n} [/mm] , wobei n [mm] \element \IN [/mm] , und x1 = c und geeigneter Startwerte c zur Betsimmung von aund b.

Nach wieviel Iterationen beträgt der Abstand |x n − b |  zur zweiten L ösung mit Sicherheit nur noch maximal ein Tausendstel des ursprünglichen Abstandes |a− b |?

        
Bezug
Banachschen Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Mi 29.04.2015
Autor: fred97

Zu [mm] I_1: [/mm]

Setze [mm] f(x)=\bruch{x^6}{6}+\bruch{x}{2}+\bruch{1}{6} [/mm]

Wenn ich mich nicht ganz vertan hab, so gilt (zeige das !):

1. [mm] f(I_1) \subseteq I_1; [/mm]

2. f ist auf [mm] I_1 [/mm] kontrahierend.

Mit Banach folgt: es gibt genau ein [mm] x_0 \in I_1 [/mm] mit [mm] f(x_0)=x_0 [/mm]

Dann ist $ [mm] x_0^6 -3x_0+1 [/mm] = 0$


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]