matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikBanachraum - Definition prüfen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Numerik" - Banachraum - Definition prüfen
Banachraum - Definition prüfen < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachraum - Definition prüfen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:54 Fr 29.05.2009
Autor: AriR

Aufgabe
Sei X ein Banachraum und $ [mm] T:X\to [/mm] $ X stetig und linear mit ||T|| < 1. Sei S definiert durch S:= $ [mm] \summe_{n=0}^\infty T^n [/mm] $

zeigen sie:
S(x) ist für alle [mm] x\in [/mm] X wohldefiniert

hallo,

ist meine lösung so richtig?

[mm] ||\bruch{T^{n+1}(x)}{T^n(x)}||=||\bruch{T(T^n(x))}{T^n(x)}||=sup_{x\in X}||\bruch{T(x)}{x}||=||T||<1 [/mm]

also folgt die behauptung nach der quotientenregel


gruß ;)

        
Bezug
Banachraum - Definition prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Fr 29.05.2009
Autor: moody

Hallo,

bitte nächstes Mal einen etwas konkreteren Frage - Titel.

"Ist das richtig?"
"Hilfe!!"
etc.

wird meistens weniger Beachtung geschenkt.

lg moody

Bezug
        
Bezug
Banachraum - Definition prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Fr 29.05.2009
Autor: fred97


> Sei X ein Banachraum und [mm]T:X\to[/mm] X stetig und linear mit
> ||T|| < 1. Sei S definiert durch S:= [mm]\summe_{n=0}^\infty T^n[/mm]
>  
> zeigen sie:
>  S(x) ist für alle [mm]x\in[/mm] X wohldefiniert
>  hallo,
>  
> ist meine lösung so richtig?
>  
> [mm]||\bruch{T^{n+1}(x)}{T^n(x)}||=||\bruch{T(T^n(x))}{T^n(x)}||=sup_{x\in X}||\bruch{T(x)}{x}||=||T||<1[/mm]


Mein Gott ! Entschuldige bitte, aber das ist völliger Unsinn. Du dividierst durch Elemente eines Bannachraumes !!!

1.Da X ein Bannachraum ist, ist auch L(X) = {A:X [mm] \to [/mm] X: A ist stetig und linear} ein Banachraum (ist Dir das klar ?)

2. Wegen ||T|| < 1 und  [mm] ||T^n|| \le ||T||^n [/mm] für jedes n, ist die Zahlenreihe

$ [mm] \summe_{n=0}^\infty ||T^n|| [/mm] $ konvergent (geometrische Reihe). Da L(X) ein Banachraum ist , ist somit

               $ [mm] \summe_{n=0}^\infty T^n [/mm] $

eine in L(X) konvergente Operatorenreihe , und somit ist S wohldefiniert.

FRED





>  
> also folgt die behauptung nach der quotientenregel
>  
>
> gruß ;)


Bezug
                
Bezug
Banachraum - Definition prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Fr 29.05.2009
Autor: AriR

was ist denn wenn man das so schreibt:

$ [mm] \bruch{||T^{n+1}(x)||}{||T^n(x)||}=\bruch{||T(T^n(x))||}{||T^n(x)||}=sup_{x\in X}\bruch{||T(x)||}{||x||}||=||T||<1 [/mm] $

könnte man die behauptung dann durch die quot.regel folgern?

Bezug
                        
Bezug
Banachraum - Definition prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Fr 29.05.2009
Autor: fred97


> was ist denn wenn man das so schreibt:
>  
> [mm]\bruch{||T^{n+1}(x)||}{||T^n(x)||}=\bruch{||T(T^n(x))||}{||T^n(x)||}=sup_{x\in X}\bruch{||T(x)||}{||x||}||=||T||<1[/mm]


Das ist schon besser, aber immer noch nicht ganz korrekt.

[mm] $\bruch{||T^{n+1}(x)||}{||T^n(x)||} \le \bruch{||T||*||T^{n}(x)||}{||T^n(x)||} [/mm] = ||T|| <1$

Mit dem Quotientenkriterium folgt:  

                [mm] \summe_{n=0}^{\infty}||T^nx|| [/mm]

konvergiert für jedes x in X. Da X ein Banachraum ist, konvergiert

            [mm] \summe_{n=0}^{\infty}T^nx [/mm] für jedes x in X

FRED



>  
> könnte man die behauptung dann durch die quot.regel
> folgern?


Bezug
                                
Bezug
Banachraum - Definition prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 Fr 29.05.2009
Autor: AriR

besten dank :)

Da X ein Banachraum ist, konvergiert

            $ [mm] \summe_{n=0}^{\infty}T^nx [/mm] $ für jedes x in X

hier fließt auch die vollständigkeit mit ein oder?

Bezug
                                        
Bezug
Banachraum - Definition prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Fr 29.05.2009
Autor: fred97

Ja !

Ist [mm] (x_n) [/mm] eine Folge in einem Banachraum und [mm] \summe_{n=1}^{\infty}||x_n|| [/mm] konvergent, so kovergiert auch [mm] \summe_{n=1}^{\infty}x_n [/mm]


Kurz: in einem Banachraum gilt:

             $absolute ~Konvergenz~ einer~ Reihe  [mm] \Rightarrow [/mm]  Konvergenz~ der~ Reihe$


FRED

Bezug
                                                
Bezug
Banachraum - Definition prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Fr 29.05.2009
Autor: AriR

alles klar. besten dank für die hilfe ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]